tim m để HPT có nghiệm duy nhất
\(\left\{{}\begin{matrix}x^2+2y^2=3\\x+y=m+1\end{matrix}\right.\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}2x-y=m+2\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y=2m+4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x-2y-x+2y=2m+4-3m-4\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x=-m\\x-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-\dfrac{m}{3}-2y=3m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\-2y=\dfrac{10}{3}m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{m}{3}\\y=\dfrac{-5}{3}m-2\end{matrix}\right.\)
Để \(x^2+y^2=10\)
\(\Leftrightarrow\left(\dfrac{-m}{3}\right)^2+\left(\dfrac{-5x}{3}-2\right)^2=10\)
\(\Leftrightarrow\dfrac{m^2}{9}+\dfrac{25m^2}{9}+\dfrac{20m}{3}+4=10\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{20m}{3}-6=0\)
\(\Leftrightarrow\dfrac{26m^2}{9}+\dfrac{60m}{9}-\dfrac{54}{9}=0\)
\(\Leftrightarrow26m^2+60m-54=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-3\\m=\dfrac{9}{13}\end{matrix}\right.\)
Lời giải:
$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):
$m(2-my)-2y=1$
$\Leftrightarrow 2m-y(m^2+2)=1$
$\Leftrightarrow y=\frac{2m-1}{m^2+2}$
$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$
Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$
Để $x<0; y>0$
$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$
$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)
$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$ (vô lý)
Do đó không tồn tại $m$ thỏa mãn đề.
Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)
\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m
Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)
Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)
Do \(m^2+2>0;\forall m\) nên (1) tương đương:
\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)
a. Bạn tự giải
b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)
\(\Leftrightarrow m^2-4m-3=0\)
\(\Leftrightarrow...\)
1: Để hệ có nghiệm duy nhất thì \(\dfrac{m}{m-1}\ne\dfrac{1}{-1}\ne-1\)
=>\(\dfrac{m+m-1}{m-1}\ne0\)
=>\(\dfrac{2m-1}{m-1}\ne0\)
=>\(m\notin\left\{\dfrac{1}{2};1\right\}\)(1)
\(\left\{{}\begin{matrix}mx+y=3\\\left(m-1\right)x-y=7\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+\left(m-1\right)x=3+7\\mx+y=3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x\left(2m-1\right)=10\\mx+y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=3-mx=3-\dfrac{10m}{2m-1}=\dfrac{6m-3-10m}{2m-1}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{10}{2m-1}\\y=\dfrac{-4m-3}{2m-1}\end{matrix}\right.\)
Để x và y trái dấu thì x*y<0
=>\(\dfrac{10}{2m-1}\cdot\dfrac{-4m-3}{2m-1}< 0\)
=>\(\dfrac{10\left(4m+3\right)}{\left(2m-1\right)^2}>0\)
=>4m+3>0
=>m>-3/4
Kết hợp (1), ta được: \(\left\{{}\begin{matrix}m>-\dfrac{3}{4}\\m\notin\left\{\dfrac{1}{2};1\right\}\end{matrix}\right.\)
2: Để x,y là số nguyên thì \(\left\{{}\begin{matrix}10⋮2m-1\\-4m-3⋮2m-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2m-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\\-4m+2-5⋮2m-1\end{matrix}\right.\)
=>\(2m-1\in\left\{1;-1;5;-5\right\}\)
=>\(2m\in\left\{2;0;6;-4\right\}\)
=>\(m\in\left\{1;0;3;-2\right\}\)
Kết hợp (1), ta được: \(m\in\left\{0;3;-2\right\}\)