Tìm hai số tự nhiên a và b ( a > b ) biết rằng a + b = 270 và ƯCLN ( a , b ) = 45
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do ƯCLN của a và b bằng 18 nên ta đặt a = 18a', b = 18b', ƯCLN (a', b') = 1 và a'; b' ∈ N..
Vì a > b nên a’ > b’
Ta có: a.b = 1944 nên 18a'. 18b' = 1944
a'. b' = 1944 : (18.18) = 6.
Do a' > b' và ƯCLN (a', b') = 1 nên
a' | 6 | 3 |
b' | 1 | 2 |
Suy ra
a | 108 | 54 |
b | 6 | 36 |
Đặt a = 28a', b = 28b', ƯCLN (a'; b') = 1 và a'; b' ∈ N.
Do a > b nên a’ > b’
Ta có a + b = 224 nên 28a' + 28b' = 224
28(a' + b') = 224
a' + b' = 224 : 28 = 8.
Do a' > b' và ƯCLN (a', b') = 1 nên
a' | 7 | 5 |
b' | 1 | 3 |
Suy ra
a | 196 | 140 |
b | 28 | 84 |
Lời giải:
Vì $ƯCLN(a,b)=45, a>b$ nên đặt $a=45x, b=45y$ với $x,y$ là stn, $x>y$, $(x,y)=1$
Theo bài ra ta có:
$a+b=45x+45y=270$
$\Rightarrow 45(x+y)=270$
$\Rightarrow x+y=6$
Vì $x>y$ và $(x,y)=1$ nên $(x,y)=(5,1), (3,2)$
$\Rightarrow (a,b)=(225, 45), (135, 90)$
ta lấy : a,b > 0 ta có a,b > 0 ta làm a.b > 0 sẽ bằng 0 - 2 = âm 2 [ a,b] =240 và 16 ta lấy 240 - 16 + - 2 = 222
ta có : 240 -16 = 224 = 224 + 222 = 446
nguyenhuyen
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) Vì a < b ; a . b = 30 NÊN TA CÓ :
a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
b) Ta có: ƯCLN(a,b) = 45
=> a = 45k; b = 45n
=> a.b = 45k.45n = 2025kn
=> kn = 24300 : 2025 = 12
Vậy k;n xảy ra hai trường hợp
TH1: k = 1; n = 12 (hoặc ngược lại)
TH2: k = 2; n = 6 (hoặc ngược lại)
a) Giả sử 42 = a . b = b . a. Điều này có nghĩa là a và b là những ước của 42. Vì b = 42 : a nên chỉ cần tìm a. Nhưng a có thể là một ước bất kì của 42.
Nếu a = 1 thì b = 42.
Nếu a = 2 thì b = 21.
Nếu a = 3 thì b = 14.
Nếu a = 6 thì b = 7.
b) ĐS: a = 1, b = 30;
a = 2, b = 15;
a = 3, b = 10;
a = 5, b = 6.
Tham khảo :
Câu hỏi của thang Tran - Toán lớp 6 - Học toán với OnlineMath