chứng minh rằng :
( abc abc0 + aba bab ) chia hết cho 7
với a,b khác 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(=100100a+10010b+1001c\)
\(100100⋮7\Rightarrow100100a⋮7\)
\(10010⋮7\Rightarrow10010b⋮7\)
\(1001⋮7\Rightarrow1001c⋮7\)
\(\Rightarrow\overline{abcabc}⋮7\)
\(\overline{ababab}=100000a+10000b+1000a+100b+10a+b\)
\(=101010a+10101b\)
\(101010⋮7\Rightarrow101010a⋮7\)
\(10101⋮7\Rightarrow10101b⋮7\)
\(\Rightarrow\overline{ababab}⋮7\)
vậy \(\left(\overline{abcabc}+\overline{ababab}\right)⋮7\left(đpcm\right)\)
abcabc+ababab chia het cho 7 vi
minh chang hieu de
minh lop 2 nen ko tra loi duoc
a/
\(\overline{aba}=101.a+10b=98a+3a+7b+3b=\)
\(=\left(98a+7b\right)+3\left(a+b\right)\)
\(98a+7b⋮7;\left(a+b\right)⋮7\Rightarrow3\left(a+b\right)⋮7\)
\(\Rightarrow\overline{abc}=\left(98a+7b\right)+3\left(a+b\right)⋮7\)
b/ xem lại đề bài
Có aba (gạch ngang trên đầu) = 100a + 10b + a = 101a + 10b = 91a + 10.(a+b)
Vì 91 chia hết cho 7 nên 91a chia hết cho 7 (1)
Lại có : a+b chia hết cho 7 nên 10.(a+b) chia hết cho 7 (2)
Từ (1) và (2) => aba (gạch ngang trên đầu) chia hết cho 7
a+b+c=a+2b chia hết cho 7 (b=c)
abc=100a+10b+c=100a+11b=98a+7b+2(a+2b)
Ta thấy 98a+7b = 7(14a+b) chia hết cho 7
mà a+2b chia hết cho 7 => 2(a+2b) chia hết cho 7
=> abc chia hết cho 7
Vì a chia hết cho b => a =kb (k thuộc N* )
b chia hết cho a => b=ka (k thuộc N* )
=> \(a\ge b\)và \(b\ge a\)
=>a = b (ĐPCM)
Giả sử abc = 100a + 10b +c = ( 98a +7b ) + (2a + 3b +c ) = 7( 14a +b ) +( 2a+ 3b +c )
suy ra abc - (2a+3b+c) chia hết cho 7
Nên nếu abc không chia hết cho 7 ( theo đầu bài ) thi 2z+3b +c không chia hết cho
Mình làm tắt ; có thể không đúng ; mong bạn thông cảm