A=1/3^2+1/5^2+1/7^2+...+1/2019^2 chung minh A<1/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=21+22+23+...+22010
A=(21+22)+(23+24)+.....+(22009+22010)
A=(21x3)+(23x3)+.....+(22009x3)
A=3x(21+23+.......+22009)
Vậy A chia hết cho 3.
NHỮNG CÂU CÒN LẠI BẠN LÀM TƯƠNG TỰ !
\(A=\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}>\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+...+\frac{1}{10\cdot11}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{10}-\frac{1}{11}\)
\(=\frac{1}{4}-\frac{1}{11}=\frac{7}{44}\)
Kết luận : ....
Ta có : \(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(................................\)
\(\frac{1}{10^2}< \frac{1}{9.10}\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4} +\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{10}=\frac{7}{30}\)
Mà \(\frac{7}{30}< \frac{7}{44}\)=> \(A< \frac{7}{44}\)(đpcm)
Chúc bn hok tốt ^.^
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{10^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...\frac{1}{9}-\frac{1}{10}\)
=> \(A< \frac{1}{4}-\frac{1}{10}=\frac{3}{30}=\frac{21}{210}\)
Ta lại có \(\frac{7}{44}=\frac{21}{132}>\frac{21}{210}\)
=> \(A< \frac{7}{44}\)
\(A=\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{2019^3}\)
\(\Rightarrow A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{2018\cdot2019\cdot2020}\)
\(\Rightarrow A< \frac{1}{2}\cdot\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}-\frac{1}{2019\cdot2020}\right)\)
\(\Rightarrow A< \frac{1}{2}\cdot\left(\frac{1}{2}-\frac{1}{2019\cdot2020}\right)\)
\(\Rightarrow A< \frac{1}{4}-\left(\frac{1}{2}\cdot\frac{1}{2019\cdot2020}\right)\)
\(\Rightarrow A< \frac{1}{4}\) ( ĐPCM )
Ta có :
\(A=\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2019^2}< \frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)
Cho \(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{2018.2020}\)
\(\Rightarrow S=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}\right)\)
\(\Leftrightarrow S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(\Leftrightarrow S=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)=\frac{1009}{4040}< \frac{1}{2}\)
Mà A < S ⇒ đpcm
\(A=\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{2019^2}\)
\(< B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2018.2020}\)
Mà \(B=\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2018.2020}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2020}\right)< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)