Cho đt \(\left(2m-1\right)x+\left(m-2\right)y=m^2-3\left(d\right)\)
Tìm m để:
a) d đi qua gốc tọa độ
b) d đi qua điểm(3;5)
c)d cắt Ox, Oy tại 1 điểm khác gốc
d) d // với Ox hoặc Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=0 và y=0 vào (d), ta được
\(2\cdot\left(m-1\right)\cdot0-\left(m^2-2m\right)=0\)
\(\Leftrightarrow m^2-2m=0\)
=>m=0 hoặc m=2
b: Khi m=3 thì (d): \(y=2\left(3-1\right)x-\left(3^2-2\cdot3\right)\)
\(\Rightarrow y=2\cdot2x-9+6=4x-3\)
Phương trình hoành độ giao điểm là:
\(x^2-4x+3=0\)
=>x=1 hoặc x=3
Khi x=1 thì y=1
Khi x=3 thì y=9
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>m=-4
b: PTHĐGĐ là;
1/2x^2-2x+m-1=0
=>x^2-4x+2m-2=0
Δ=(-4)^2-4(2m-2)
=16-8m+8=-8m+24
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
=>m<3
x1x2(y1+y2)+48=0
=>x1x2(x1^2+x2^2)+48=0
=>(2m-2)[4^2-2(2m-2)]+48=0
=>(2m-2)(16-4m+4)+48=0
=>(2m-2)*(20-4m)+48=0
=>40m-8m^2-40+8m+48=0
=>-8m^2+48m+8=0
=>m=3+căn 10 hoặc m=3-căn 10
a: Để (d1) và (d2) cắt nhau thì \(2m+1\ne m+2\)
=>\(2m-m\ne2-1\)
=>\(m\ne1\)
b: Khi m=-1 thì (d1): \(y=\left(2-1\right)x+1=x+1\)
Khi m=-1 thì (d2): \(y=\left(1-2\right)x+2=-x+2\)
Vẽ đồ thị:
Phương trình hoành độ giao điểm là:
x+1=-x+2
=>x+x=2-1
=>2x=1
=>\(x=\dfrac{1}{2}\)
Thay x=1/2 vào y=x+1, ta được:
\(y=\dfrac{1}{2}+1=\dfrac{3}{2}\)
c:
(d1): y=(m+2)x+1
=>(m+2)x-y+1=0
Khoảng cách từ A(1;3) đến (d1) là:
\(d\left(A;\left(d1\right)\right)=\dfrac{\left|1\left(m+2\right)+3\cdot\left(-1\right)+1\right|}{\sqrt{\left(m+2\right)^2+\left(-1\right)^2}}\)
\(=\dfrac{\left|m\right|}{\sqrt{\left(m+2\right)^2+1}}\)
Để d(A;(d1)) lớn nhất thì m+2=0
=>m=-2
Vậy: \(d\left(A;\left(d1\right)\right)_{max}=\dfrac{\left|-2\right|}{\sqrt{\left(-2+2\right)^2+1}}=\dfrac{2}{1}=2\)
(P): \(y=\left(1+m\right)x^2-2\left(m-1\right)x+m-3\)
\(=x^2+mx^2-2mx+2x+m-3\)
\(=m\left(x^2-2x+1\right)+x^2+2x-3\)
\(=m\left(x-1\right)^2+x^2+2x-3\)
Tọa độ điểm cố định mà (Pm) luôn đi qua là:
\(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\y=x^2+2x-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-1=0\\y=x^2+2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1+2-3=0\end{matrix}\right.\)
mk chỉ cho cách lm :
a) thế điềm \(O\left(0;0\right)\) vào d \(\Leftrightarrow x=0;y=0\) --> m
b) thế điểm \(\left(3;5\right)\) vào d \(\Leftrightarrow x=3;y=5\) --> m
c) thế \(x=0;y=0\) rồi biến đổi đẳng thức d
rồi tìm điều kiện để đẳng thức đó không đúng
d) ta có đường thẳng \(d\backslash\backslash Ox\) có dạng \(y=a\) và \(d\backslash\backslash Oy\) có dạng \(x=b\)
--> \(d\backslash\backslash Ox\) \(\Leftrightarrow\) \(2m-1=0\) và --> \(d\backslash\backslash Oy\) \(\Leftrightarrow\) \(m-2=0\)
--> ...