K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2023

\(B=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left(x^2-x.2y+\left(2y\right)^2\right)\\ =x^3+\left(2y\right)^3\\ =\left(-8\right)^3+\left(2.-2\right)^3\\ =\left(-8\right)^3+\left(-4\right)^3\\ =-512+\left(-64\right)\\ =-512-64=-576\)

25 tháng 9 2023

\(B=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)

\(=x\left(x^2-2xy+4y^2\right)+2y\left(x^2-2xy+4y^2\right)\)

\(=x^3-2x^2y+4xy^2+2x^2y-4xy^2+8y^3\)

\(=x^3+8y^3+\left(-2x^2y+2x^2y\right)+\left(4xy^2-4xy^2\right)\)

\(=x^3+8y^3\)

Thay \(x=-8;y=-2\) vào \(B\), ta được:

\(B=\left(-8\right)^3+8\cdot\left(-2\right)^3\)

\(=-512-64\)

\(=-576\)

Vậy \(B=-576\) tại \(x=-8;y=-2.\)

#\(Toru\)

17 tháng 12 2021

\(=\dfrac{x+2y}{\left(x-2y\right)\left(x+2y\right)}-\dfrac{x}{x+2}\cdot\dfrac{\left(x+2\right)^2}{x\left(x-2y\right)}=\dfrac{1}{x-2y}-\dfrac{x+2}{x-2y}=\dfrac{-x-1}{x-2y}\)

Ta có:(x-2y).(x2+2xy+4y2)-(x+y).(x2-xy-y2)

=x3-2x2y+2x2y+4xy2-8y3-x3-x2y+x2y+xy2+xy2                         

    =6xy2-7y3.

1 tháng 12 2017

a/ \(\frac{7x-14y}{x^2-4y^2}=\frac{7\left(x-2y\right)}{x^2-\left(2y\right)^2}=\frac{7\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\frac{7}{x+2y}.\)

b/ \(\frac{1-\frac{2y}{x}+\frac{y^2}{x^2}}{\frac{1}{x}-\frac{1}{y}}=\frac{\frac{x^2-2xy+y^2}{x^2}}{\frac{y-x}{xy}}=\frac{\left(x-y\right)^2}{x^2}.\frac{xy}{-\left(x-y\right)}=-\frac{y\left(x-y\right)}{x}=\frac{y\left(y-x\right)}{x}\)

4 tháng 9 2017

Ta có:(x-2y).(x2+2xy+4y2)-(x+y).(x2-xy-y2)

=x3-2x2y+2x2y+4xy2-8y3-x3-x2y+x2y+xy2+xy2                              =6xy2-7y3.

2 tháng 12 2017

ib tui làm cho 

CÁI NÀY CŨNG KHÓ, GIÚP EM GIẢI HỘ VỚI !

24 tháng 5 2017

a)\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)

\(\Leftrightarrow\frac{\left(x+y\right)^2-1}{\left(x+1\right)^2-y^2}\)

\(\Leftrightarrow\frac{\left(x+y+1\right)\left(x+y-1\right)}{\left(x+1-y\right)\left(x+1+y\right)}\)

\(\Leftrightarrow\frac{x+y-1}{x-y+1}\)

b)\(\frac{3x^3-6x^2y+xy^2-2y^3}{9x^5-18x^4y-xy^4+2y^5}\)

\(\Leftrightarrow\frac{3x^2\left(x-2y\right)+y^2\left(x-2y\right)}{9x^4\left(x-2y\right)-y^4\left(x-2y\right)}\)

\(\Leftrightarrow\frac{\left(3x^2+y^2\right)\left(x-2y\right)}{\left(9x^4-y^4\right)\left(x-2y\right)}\)

\(\Leftrightarrow\frac{3x^2+y^2}{\left(3x^2-y^2\right)\left(3x^2+y^2\right)}\)

\(\Leftrightarrow\frac{1}{3x^2-y^2}\)