K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2022

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{d}{9}=\dfrac{a+b+c+d}{3+5+7+9}=\dfrac{12}{24}=\dfrac{1}{2}\)

=>a=3/2; b=5/2; c=7/2; d=9/2

27 tháng 7 2015

Pan lam nhu binh thuong la dc 

30 tháng 10 2015

gọi 2 cạnh là x,y

theo bài ra ta có:

nửa chi vi :40:2=20

=>x+y=20

x/y=2/3 và x+y=20

=>x/2=y/3 và x+y=20

áp dụng tcdtsbn:

x/2=y/3=x+y/2+3=20/5=4

từ x/2=4=>x=8

y/3=4=>y=12

vậy độ dai2 cạnh là 12m và 8m

diện tích=12.8=96(m^2)

16 tháng 11 2021
Con gì chạy nhanh nhất
20 tháng 7 2016

Gọi 4 phần đó lần lượt là a, b, c, d.

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

\(\frac{a}{3}=\frac{1}{2}\Rightarrow a=\frac{3}{2}\)

\(\frac{b}{5}=\frac{1}{2}\Rightarrow b=\frac{5}{2}\)

\(\frac{c}{7}=\frac{1}{2}\Rightarrow c=\frac{7}{2}\)

\(\frac{d}{9}=\frac{1}{2}\Rightarrow d=\frac{9}{2}\)

Vậy 4 phần đó lần lượt là \(\frac{3}{2};\frac{5}{2};\frac{7}{2};\frac{9}{2}\)

9 tháng 12 2015

a) \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{310}{10}=31\)

  a=62

   b =93

  c =155

b) 2x = 3y =>\(\frac{x}{3}=\frac{y}{2}=\frac{x+y}{3+2}=\frac{310}{5}=62\)

   x =3.62 =186

  y =2 . 62 =124

3 tháng 8 2016

Gọi 4 phần cần chia là x,y,z,t.Theo đề :

x + y + z + t = 12 mà x : y : z : t = 3 : 5 : 7 : 9

=> \(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}=\frac{x+y+z+t}{3+5+7+9}=\frac{12}{24}=0,5\)(tính chất của dãy tỉ số bằng nhau)

=> x = 1,5 ; y = 2,5 ; z = 3,5 ; t = 4,5.Vậy 4 phần cần chia là 1,5 ; 2,5 ; 3,5 ; 4,5

3 tháng 8 2016

Gọi 4 phần là x,y,z,t

TA có:\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}=\frac{x+y+z+t}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

\(\frac{x}{3}=\frac{1}{2}=>x=1,5\)

\(\frac{y}{5}=\frac{1}{2}=>y=\frac{5}{2}\)

\(\frac{z}{7}=\frac{1}{2}=>z=\frac{7}{2}\)

\(\frac{t}{9}=\frac{1}{2}=>t=\frac{9}{2}\)

26 tháng 7 2017

Bài 1:

Gọi độ dài các cạnh của tam giác đó lần lượt là x;y;z ( x;y;z > 0)

Ta có: \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5};x+y+z=48\)

Áp dụng tính chất dãy tỉ số bằng nhau:

        \(\frac{x}{4}=\frac{y}{7}=\frac{z}{5}=\frac{x+y+z}{4+7+5}=\frac{48}{16}=3\)

         \(\Rightarrow\frac{x}{4}=3\Rightarrow x=3.4=12\)

               \(\frac{y}{7}=3\Rightarrow y=3.7=21\)

                \(\frac{z}{5}=3\Rightarrow z=3.5=15\)

Vậy độ dài các cạnh của tam giác đó lần lượt là: 12;21;15

thank trc ^~^

2 tháng 1 2022

Answer:

Câu 1:

Gọi ba phần được chia từ số 470 lần lượt là x, y, z 

Có: Ba phần tỉ lệ nghịch với 3, 4, 5

\(\Rightarrow x3=y4=z5\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{12}\) và \(x+y+z=470\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{20+15+12}=\frac{470}{47}=10\)

\(\Rightarrow\hept{\begin{cases}x=200\\y=150\\z=120\end{cases}}\)

Câu 2: 

Gọi ba phần được chia từ số 555 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\4x=5y=6z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=55\\\frac{x}{15}=\frac{y}{12}=\frac{z}{10}=\frac{x}{15+12+10}=\frac{555}{35}=\frac{111}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1665}{7}\\y=\frac{1332}{7}\\z=\frac{1110}{7}\end{cases}}\)

Câu 3:

Gọi ba phần được chia từ số 314 lần lượt là x, y, z

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2}{3}x=\frac{2}{5}y=\frac{3}{7}z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{2x}{3}=\frac{2y}{5}=\frac{3z}{7}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y+z=314\\\frac{x}{9}=\frac{y}{15}=\frac{z}{14}=\frac{x+y+z}{9+15+14}=\frac{314}{38}=\frac{157}{19}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{1413}{19}\\y=\frac{2355}{19}\\z=\frac{2198}{19}\end{cases}}\)

21 tháng 7 2019

Gọi a,b,c,d là các phần được chia ra từ số 36 . 

Theo đề ta có : \(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\)

áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{36}{24}=\frac{3}{2}\)

Từ \(\frac{a}{3}=\frac{3}{2}=>a=\frac{9}{2}=4,5\)

Từ \(\frac{b}{5}=\frac{3}{2}=>b=7,5\)

Từ \(\frac{c}{7}=\frac{3}{2}=>c=10,5\)

Từ \(\frac{d}{9}=\frac{3}{2}=>d=13,5\)

vậy số đó đc tách thành  4,5 ; 7,5 ; 10,5 ; 13,5

21 tháng 7 2019

gọi 4 phần là x, y, z, t

ta có: \(\frac{a}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}\)

áp dụng tính chất của dãy tỉ số bằng nhau, ta có: 

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{7}=\frac{t}{9}=\frac{x+y+z+t}{3+5+7+9}=\frac{36}{24}=\frac{3}{2}\)

\(\frac{x}{3}=\frac{3}{2}\Rightarrow x=4,5\)

\(\frac{y}{5}=\frac{3}{2}\Rightarrow y=7,5\)

\(\frac{z}{7}=\frac{3}{2}\Rightarrow x=10,5\)

\(\frac{t}{9}=\frac{3}{2}\Rightarrow x=13,5\)

=> x = 4,5; y = 7,5; x = 10,5; t = 13,5

Vậy: 4 phần cần chia là: 4,5; 7,5; 10,5; 13,5

Bài 1:

Ta có: x:y:z:t=15:7:3:1

\(\Rightarrow\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}\)

Ta lại có: x-y+z-t=10

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x-y+z-t}{15-7+3-1}=\frac{10}{10}=1\)

Do đó:

\(\left\{{}\begin{matrix}\frac{x}{15}=1\\\frac{y}{7}=1\\\frac{z}{3}=1\\\frac{t}{1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=7\\z=3\\t=1\end{matrix}\right.\)

Vậy: (x,y,z,t)=(15;7;3;1)

Bài 2:

Gọi các phần cần tìm lần lượt là a,b,c,d

Theo đề bài, ta có:

a,b,c,d lần lượt tỉ lệ với 3;5;7;9

\(\Leftrightarrow\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}\)

và a+b+c+d=12

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{a}{3}=\frac{b}{5}=\frac{c}{7}=\frac{d}{9}=\frac{a+b+c+d}{3+5+7+9}=\frac{12}{24}=\frac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\frac{a}{3}=\frac{1}{2}\\\frac{b}{5}=\frac{1}{2}\\\frac{c}{7}=\frac{1}{2}\\\frac{d}{9}=\frac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1,5\\b=2,5\\c=3,5\\d=4,5\end{matrix}\right.\)

Vậy: bốn phần cần tìm là 1,5; 2,5; 3,5 và 4,5

Bài 3:

Ta có: 2a=3b

\(\Leftrightarrow\frac{a}{3}=\frac{b}{2}\)

\(\Rightarrow\frac{a}{21}=\frac{b}{14}\)(1)

Ta có: 5b=7c

\(\Leftrightarrow\frac{b}{7}=\frac{c}{5}\)

\(\Leftrightarrow\frac{b}{14}=\frac{c}{10}\)(2)

Từ (1) và (2) suy ra \(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)

\(\Leftrightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)

Ta có: 3a+5c-7b=30

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)

Do đó:

\(\left\{{}\begin{matrix}\frac{3a}{63}=2\\\frac{7b}{98}=2\\\frac{5c}{50}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=126\\7b=196\\5c=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=42\\b=28\\c=20\end{matrix}\right.\)

Vậy: (a,b,c)=(42;28;20)