Tính
sin6α + sin6β + 3sin2α.cos2α
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
= sin 6 α + cos 6 α + 3 sin 2 α . cos 2 α . ( sin 2 α + cos 2 α ) v ì sin 2 α + cos 2 α = 1
= ( sin 2 α ) 3 + 3 sin 2 α 2 cos 2 + 3 sin 2 α . cos 2 α 2 + cos 2 α 3
Đáp án cần chọn là: B
Ta có:
`sin^4 \alpha + cos^4 \alpha -sin^6 \alpha- cos^6\alpha`
`=sin^4\alpha+cos^4\alpha-(sin^2\alpha+cos^2\alpha)(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^4\alpha + cos^4\alpha-(sin^4\alpha-sin^2\alpha cos^2\alpha+cos^4\alpha)`
`=sin^2\alpha cos^2\alpha(ĐPCM)`
A = 2 ( sin 2 α + cos 2 α ) ( sin 4 α + cos 4 α - sin 2 α cos 2 α )
- 3 ( sin 4 α + cos 4 α )
= - sin 4 α - cos 4 α - 2 sin 2 α cos 2 α
= - ( sin 2 α + cos 2 α ) 2 = - 1
c: 2(sin^6a+cos^6a)+1
=2[(sin^2a+cos^2a)^3-3*sin^2a*cos^2a]+1
=2-6sin^2acos^2a+1
=3-6*sin^2a*cos^2a
=3(sin^4a+cos^4a)
a:
Sửa đề: =-tana*tanb
\(VT=\left(\dfrac{sina}{cosa}-\dfrac{sinb}{cosb}\right):\left(\dfrac{cosa}{sina}-\dfrac{cosb}{sinb}\right)\)
\(=\dfrac{sina\cdot cosb-sinb\cdot cosa}{cosa\cdot cosb}:\dfrac{cosa\cdot sinb-cosb\cdot sina}{sina\cdot sinb}\)
\(=\dfrac{sin\left(a-b\right)}{cosa\cdot cosb}\cdot\dfrac{sina\cdot sinb}{sin\left(b-a\right)}\)
\(=-tana\cdot tanb\)
=VP
a: \(VT=\dfrac{\left(sina+cosa\right)^3-3\cdot sina\cdot cosa\left(sina+cosa\right)}{sina+cosa}\)
=(sina+cosa)^2-3*sina*cosa
=sin^2a+cos^2a-sina*cosa
=1-sina*cosa=VP
c: VT=(sin^2a+cos^2a)^2-2*sin^2a*cos^2a-(sin^2a+cos^2a)^3+3*sin^2a*cos^2a*(sin^2a+cos^2a)
=1-2sin^2a*cos^2a-1+3*sin^2a*cos^2a
=sin^2a*cos^2a=VP
= (sin2\(\alpha\))3 + (sin2\(\alpha\))3 + 3sin2\(\alpha\).cos2\(\alpha\)
= \((sin^2\alpha+cos^2\alpha)\left(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4\alpha\right)+3sin^2\alpha.cos^2\alpha\)
= \(sin^4\alpha-sin^2\alpha.cos^2\alpha+cos^4+3sin^2\alpha.cos^2\alpha\)
= \(sin^4\alpha+2sin^2\alpha.cos^2\alpha+cos^4\alpha\)
= (\(sin^2\alpha+cos^2\alpha\))2
= 12 = 1