TÌM SỐ NGUYÊN TỐ x;y BIẾT
x^2+y^2-4x+1=0
Gíup mình nhanh nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 bạn tham khảo đi có trong các câu hỏi tương tự
Bài 2 : Ta có :
\(x^2-6y^2=1\)
\(\Rightarrow x^2-1=6y^2\)
\(\Rightarrow y^2=\frac{x^2-1}{6}\)
Nhận thấy \(y^2\inƯ\)của \(x^2-1⋮6\)
=> y2 là số chẵn
Mà y là số nguyên tố => y = 2
Thay vào : \(\Rightarrow x^2-1=4\cdot6=24\)
\(\Rightarrow x^2=25\Rightarrow x=5\)
Vậy x=5 ; y =2
Lời giải:
Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)
Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$
Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)
Nếu $y$ lẻ:
$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$
Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)
Vậy $x=y=2$
Xét 2 trường hợp x = 2 và x >2.
Với x = 2. Vì 2 là số nguyên tố và x2 + 1 = 5 cũng là số nguyên tố => x = 2 thỏa mãn
Với x > 2, vì x là nguyên tố => x chia 2 dư 1 => x2 chia cho 2 dư 1 => x2 +1 chia hết cho 2 . Mà x2 + 1 > 2 => x2 +1 không là số nguyên tố. Vậy không có số x nguyên tố nào lớn hơn 2 mà x2 + 1 cũng là số nguyên tố.