cho ΔABC với A(1;2) B(-1;5) C(3;-4)
a. lập phương trình đường thẳng đường cao BK, CJ
b. lập phương trình đường thẳng trung tuyến AN, CP
c. lập phương trình đường thẳng đường trung trực d của AB, BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. hạ đương cao AK
suy ra BK=KC=3:2=1.5(cm)
Xét tam giac ABC có góc AKB=90
AK^2+BK^2=AB^2(đl py-ta-go)
AK=\(\dfrac{3\sqrt{3}}{2}\)
SABC=\(\dfrac{1}{2}.\dfrac{3\sqrt{3}}{2}.3=\dfrac{9\sqrt{3}}{4}\)
a, vì BD song song với AC nên góc B2 bằng góc C2. tương tự được góc C1 bằng góc B1.Do đó tam giác ABC = tam giác BAE(g.c.g) (dpcm)
b, vì AC song song với BD nên góc D bằng góc ACF.
vì AF song song với BC nên góc C1= góc CAF = B2.
theo câu a, tam giác ABC= tam giác DCB nên AC=BD, AB=DC
Do đó tam giác BDC=tam giác ACF(g.c.g) nên DC = CF=AB nên DF= DC+CF=2.AB.
Tương tự ta đc; DE=2.AC, EF=2.BC
Do đó Chu vi tam giác DEF bằng 2 lần chu vi tam giác ABC và bằng 30 cm
số đo các góc A,B,C lần lượt tỉ lệ với 3; 2; 1
=> A/3 = B/2 = C/1
=> (A+B+C)/(3+2+1) = A/3 = B/2 = C/1
A + B + C = 180
=> 180/6 = 30 = A/3 = B/2 = C/1
=> A = 30.3 = 90
B = 30.2 = 60
C = 30
a)XÉT\(\Delta ABC\)CÓ
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
gọi các GÓC A,B,C LẦN LƯỢT LÀ a,b,c TỈ LỆ VỚI 3;2;1
\(\Rightarrow a:b:c=3:2:1\)
\(\Rightarrow\frac{a}{3}=\frac{b}{2}=\frac{c}{1}\)và \(a+b+c=180\)
theo tính chất dãy tỉ số bằng nhau có
\(\frac{a}{3}=\frac{b}{2}=\frac{c}{1}=\frac{a+b+c}{3+2+1}=\frac{180}{6}=30\)
do đó \(\frac{a}{3}=30\Rightarrow a=3.30=90\)
\(\frac{b}{2}=30\Rightarrow b=2.30=60\)
\(\frac{c}{1}=30\Rightarrow c=1.30=30\)
vậy \(\widehat{A}=90^0;\widehat{B}=60^o;\widehat{C}=30^o\)
a, \(BC=BH+HC=5\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)
a: BC=4+1=5(cm)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)
a: Phương trình đường cao BK nhận vecto AC làm vecto pháp tuyến và đi qua B
\(\overrightarrow{AC}=\left(2;-6\right)\)
=>BK: 2(x+1)-6(y-5)=0
=>x+1-3(y-5)=0
=>x+1-3y+15=0
=>x-3y+16=0
Đường cao CJ nhận vecto AB làm vecto chỉ phương và đi qua C
\(\overrightarrow{AB}=\left(-2;3\right)\)
Phương trình CJlà: -2(x-3)+3(y+4)=0
=>-2x+6+3y+12=0
=>-2x+3y+18=0
b: Tọa độ N là:
\(\left\{{}\begin{matrix}x=\dfrac{-1+3}{2}=\dfrac{2}{2}=1\\y=\dfrac{5-4}{2}=\dfrac{1}{2}=0.5\end{matrix}\right.\)
N(1;0,5); A(1;2)
=>vecto AN=(0;-1,5)
=>VTPT là (1,5;0)
Phương trình AN là: 1,5(x-1)+0(y-2)=0
=>x-1=0
=>x=1