Cho tam giác ABC, M thuộc AB. N là trung điểm AC. P nằm trên MN sao cho NP=NM
Chứng minh AP=MP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét \(\Delta ANP\) và \(\Delta CNM\) có
\(AN=CN\)
\(\widehat{ANP}=\widehat{CNM}\)
\(NP=NM\)
\(\Rightarrow\Delta ANP=\Delta CNM\)
\(\Rightarrow\widehat{NAP}=\widehat{NCM}\)
\(\Rightarrow\)AP // MC
\(\Rightarrow AP=MC\)
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của BC
Do đó: MP là đường trung bình của ΔBAC
Suy ra: MP//AC và \(MP=\dfrac{AC}{2}=5\left(cm\right)\)
Xét ΔABC có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔABC
Suy ra: NP//AB và \(NP=\dfrac{AB}{2}=2.5\left(cm\right)\)
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔBAC
Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=5\left(cm\right)\)
a: MP=12cm
b: Xét ΔNMD và ΔNED có
NM=NE
\(\widehat{MND}=\widehat{END}\)
ND chung
Do đó:ΔNMD=ΔNED
Suy ra: DM=DE
hay ΔDME cân tại D
b, Vì N là trung điểm của AC,
N là trung điểm của MP
==>>> APCM là hình bình hành=> AM//PC => AB//PC
c, MP làm sao bằng đc PC????
chỉ có MP=BC thôi bạn ơi
vì PM // AC nên áp dụng định lí Ta lét, ta có:
AP/AB = MC/BC (1)
tương tự vì MN//AB nên áp dụng định lí Ta lét:
AN/AC = BM/BC (2)
Lấy (1)+(2) ta có => AP/AB + AN/AC = MC/BC + BM/BC = BM+MC/BC = BC/BC = 1(đpcm)
vậy AP/AB + AN/AC = 1
Ta có thể giải bài toán này bằng cách sử dụng công thức diện tích của hình bình hành, và áp dụng định lí hai đường cao trong tam giác để tính diện tích tam giác ABC.
Đầu tiên, ta cần tính diện tích tam giác ABC. Ta sẽ sử dụng định lí hai đường cao trong tam giác ABC để tính toán. Gọi H là hạt giác của góc A trong tam giác ABC, và gọi AH là đường cao kẻ từ A xuống BC. Ta sẽ sử dụng định lí hai đường cao trong tam giác ABC để tính diện tích của tam giác này:
$S_{ABC} = \frac{1}{2}AH \cdot BC$
Tiếp theo, ta cần tính diện tích của hình bình hành AEMK. Để làm điều này, ta sử dụng công thức diện tích của hình bình hành:
$S_{AEMK} = AE \cdot MK$
Ta có thể tính được AE và MK bằng cách sử dụng các hệ số tỉ lệ. Gọi x là độ dài BM, ta có:
$AE = \frac{AB}{BC} \cdot BM = \frac{S}{S_{ABC}} \cdot x$
$MK = \frac{MC}{BC} \cdot BM = \frac{S - SMCKS}{S_{ABC}} \cdot x$
Lưu ý rằng ta sử dụng diện tích của hình bình hành để tính các hệ số tỉ lệ này.
Cuối cùng, ta có thể tính diện tích của hình bình hành AEMK bằng cách thay các giá trị được tính toán vào công thức diện tích của hình bình hành:
$S_{AEMK} = AE \cdot MK = \frac{S}{S_{ABC}} \cdot x \cdot \frac{S - SMCKS}{S_{ABC}} \cdot x = \frac{S(S-SMCKS)}{S_{ABC}^2} \cdot x^2$
Vậy diện tích của hình bình hành AEMK là $\frac{S(S-SMCKS)}{S_{ABC}^2} \cdot x^2$.
a: Xét ΔABC có
N là trung điểm của AC
M là trung điểm của AB
Do đó: NM là đường trung bình của ΔABC
Suy ra: NM//BC và \(NM=\dfrac{BC}{2}=3\left(cm\right)\)