K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2018

ồ lâu rồi ..toán lớp 7 nè ...

25 tháng 10 2018

a/ Xét \(\Delta ANP\) và \(\Delta CNM\) có

\(AN=CN\)

\(\widehat{ANP}=\widehat{CNM}\)

\(NP=NM\)

\(\Rightarrow\Delta ANP=\Delta CNM\)

\(\Rightarrow\widehat{NAP}=\widehat{NCM}\)

\(\Rightarrow\)AP // MC

\(\Rightarrow AP=MC\)

Xét ΔABC có 

M là trung điểm của AB

P là trung điểm của BC

Do đó: MP là đường trung bình của ΔBAC

Suy ra: MP//AC và \(MP=\dfrac{AC}{2}=5\left(cm\right)\)

Xét ΔABC có

N là trung điểm của AC

P là trung điểm của BC

Do đó: NP là đường trung bình của ΔABC

Suy ra: NP//AB và \(NP=\dfrac{AB}{2}=2.5\left(cm\right)\)

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔBAC

Suy ra: MN//BC và \(MN=\dfrac{BC}{2}=5\left(cm\right)\)

a: MP=12cm

b: Xét ΔNMD và ΔNED có 

NM=NE

\(\widehat{MND}=\widehat{END}\)

ND chung

Do đó:ΔNMD=ΔNED

Suy ra: DM=DE
hay ΔDME cân tại D

3 tháng 10 2014

b, Vì N là trung điểm của AC, 

        N là trung điểm của MP

==>>> APCM là hình bình hành=> AM//PC => AB//PC

c, MP làm sao bằng đc PC????

chỉ có MP=BC thôi bạn ơi

15 tháng 12 2014

Hình như câu c với câu a trùng nhau thì phải?

15 tháng 2 2017

vì PM // AC nên áp dụng định lí Ta lét, ta có:

AP/AB = MC/BC (1)

tương tự vì MN//AB nên áp dụng định lí Ta lét:

AN/AC = BM/BC (2)

Lấy (1)+(2) ta có => AP/AB + AN/AC = MC/BC + BM/BC = BM+MC/BC = BC/BC = 1(đpcm)

vậy AP/AB + AN/AC = 1

1 tháng 7 2023

Ta có thể giải bài toán này bằng cách sử dụng công thức diện tích của hình bình hành, và áp dụng định lí hai đường cao trong tam giác để tính diện tích tam giác ABC.

Đầu tiên, ta cần tính diện tích tam giác ABC. Ta sẽ sử dụng định lí hai đường cao trong tam giác ABC để tính toán. Gọi H là hạt giác của góc A trong tam giác ABC, và gọi AH là đường cao kẻ từ A xuống BC. Ta sẽ sử dụng định lí hai đường cao trong tam giác ABC để tính diện tích của tam giác này:

$S_{ABC} = \frac{1}{2}AH \cdot BC$

Tiếp theo, ta cần tính diện tích của hình bình hành AEMK. Để làm điều này, ta sử dụng công thức diện tích của hình bình hành:

$S_{AEMK} = AE \cdot MK$

Ta có thể tính được AE và MK bằng cách sử dụng các hệ số tỉ lệ. Gọi x là độ dài BM, ta có:

$AE = \frac{AB}{BC} \cdot BM = \frac{S}{S_{ABC}} \cdot x$

$MK = \frac{MC}{BC} \cdot BM = \frac{S - SMCKS}{S_{ABC}} \cdot x$

Lưu ý rằng ta sử dụng diện tích của hình bình hành để tính các hệ số tỉ lệ này.

Cuối cùng, ta có thể tính diện tích của hình bình hành AEMK bằng cách thay các giá trị được tính toán vào công thức diện tích của hình bình hành:

$S_{AEMK} = AE \cdot MK = \frac{S}{S_{ABC}} \cdot x \cdot \frac{S - SMCKS}{S_{ABC}} \cdot x = \frac{S(S-SMCKS)}{S_{ABC}^2} \cdot x^2$

Vậy diện tích của hình bình hành AEMK là $\frac{S(S-SMCKS)}{S_{ABC}^2} \cdot x^2$.

a: Xét ΔABC có

N là trung điểm của AC

M là trung điểm của AB

Do đó: NM là đường trung bình của ΔABC

Suy ra: NM//BC và \(NM=\dfrac{BC}{2}=3\left(cm\right)\)