Tìm x,y:\(\frac{1-x}{3}\)\(=\)\(\frac{y}{10}\)và x+y=15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
a) Ap dụng tích chất dãy tỉ số = nhau
Ta có:x/2=y/3=x+y/5+7=15/15=1
x/2=1=> x=2
y/3=1=> y=3
x + x : 0,2 = 1,35
x * 1 + x * 5 = 1,35
x * ( 1 + 5 ) = 1,35
x * 6 = 1,35
x = 1,35 : 6
x = 0,225
hok tốt nha ^_^
nè, không làm thôi ằ nhagg. khó thì đừng gửi câu trả lời làm gì cho mệt nha bạn
1)
a) Ta có: \(\frac{x}{y}=\frac{7}{13}\).
=> \(\frac{x}{7}=\frac{y}{13}\) và \(x+y=60.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{7}=\frac{y}{13}=\frac{x+y}{7+13}=\frac{60}{20}=3.\)
\(\left\{{}\begin{matrix}\frac{x}{7}=3=>x=3.7=21\\\frac{y}{13}=3=>y=3.13=39\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(21;39\right).\)
c) Ta có: \(\frac{x}{y}=\frac{9}{10}.\)
=> \(\frac{x}{9}=\frac{y}{10}\) và \(y-x=120.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{9}=\frac{y}{10}=\frac{y-x}{10-9}=\frac{120}{1}=120.\)
\(\left\{{}\begin{matrix}\frac{x}{9}=120=>x=120.9=1080\\\frac{y}{10}=120=>y=120.10=1200\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(1080;1200\right).\)
d) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}.\)
=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) và \(x+y+z=81.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{81}{9}=9.\)
\(\left\{{}\begin{matrix}\frac{x}{2}=9=>x=9.2=18\\\frac{y}{3}=9=>y=9.3=27\\\frac{z}{4}=9=>z=9.4=36\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(18;27;36\right).\)
Mình chỉ làm 3 câu thôi nhé, dài quá bạn.
Chúc bạn học tốt!
biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{1-x}{3}=\frac{y}{10}=\frac{1-x-y}{3-10}=\frac{1-\left(x+y\right)}{-7}=\frac{1-15}{-7}=2\)
Suy ra: \(\hept{\begin{cases}\frac{1-x}{3}=2\\\frac{y}{10}=2\end{cases}\Rightarrow\hept{\begin{cases}x=-5\\y=20\end{cases}}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{y}{10}=\frac{1-x}{3}=\frac{y-1+x}{10-3}=\frac{x+y-1}{7}=\frac{15-1}{7}=2\)
\(\Rightarrow\hept{\begin{cases}\frac{y}{10}=2\\\frac{1-x}{3}=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=20\\1-x=6\end{cases}\Leftrightarrow}\hept{\begin{cases}y=20\\x=-5\end{cases}}}\)