c/m: x^3/y +y^3/z +z^3/x >x^2 +y^2 +z^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\left(\dfrac{x^3}{y^2}+\dfrac{y^3}{z^2}+\dfrac{z^3}{x^2}\right)\left(x+y+z\right)\ge\left(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\right)^2\)
Cần chứng minh \(\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge x+y+z\)
Dễ thấy;\(VT=\dfrac{x^2}{y}+\dfrac{y^2}{z}+\dfrac{z^2}{x}\ge\dfrac{\left(x+y+z\right)^2}{x+y+z}=x+y+z\)
BĐT được chứng minh
\("="\Leftrightarrow x=y=z\)
Với \(a;b>0\) ta luôn có: \(\frac{a^3+b^3}{a^2+b^2}\ge\frac{a+b}{2}\)
Thật vậy, BĐT tương đương:
\(2\left(a^3+b^3\right)\ge\left(a^2+b^2\right)\left(a+b\right)\)
\(\Leftrightarrow a^3-a^2b+b^3-ab^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng vào bài toán:
\(P=\frac{x^3+y^3}{x^2+y^2}+\frac{y^3+z^3}{y^2+z^2}+\frac{z^3+x^3}{z^2+x^2}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=x+y+z\ge6\)
\(\Rightarrow P_{min}=6\) khi \(x=y=z=2\)
Áp dụng bđt Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\) ta được
\(VT\ge\sqrt{\left(x+y\right)^2+\left(\frac{1}{x}+\frac{1}{y}\right)^2}+\sqrt{z^2+\frac{1}{z^2}}\)
\(\ge\sqrt{\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2}\)
Áp dụng bđt Cô-si có
\(\left(x+y+z\right)^2+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge9\sqrt[3]{\left(xyz\right)^2}+\frac{9}{\sqrt[3]{\left(xyz\right)^2}}\)
Đặt \(\sqrt[3]{\left(xyz\right)^2}=t\)
\(\Rightarrow0\le t=\sqrt[3]{\left(xyz\right)^2}\le\left(\frac{x+y+z}{3}\right)^2=\frac{1}{4}\)
Khi đó \(VT\ge\sqrt{9t+\frac{9}{t}}=\sqrt{3\left(48t+\frac{3}{t}-45t\right)}\ge\sqrt{3\left(2.\sqrt{3.48}-\frac{45}{4}\right)}=\frac{3\sqrt{17}}{2}\)
\(\frac{x}{1+y^2}=\frac{x\left(1+y^2\right)-xy^2}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự: \(\frac{y}{1+z^2}\ge y-\frac{1}{2}yz\) ; \(\frac{z}{1+x^2}\ge z-\frac{1}{2}zx\)
Cộng vế với vế:
\(P\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=z=1\)