K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2019

A B H K I D m C ( (

GT

△ABC: AB = AC, Am ∩ BC = {D} ; BAD = DAC = BAC/2 . HD ⊥ AB. DK ⊥ AC. BAC = 4B

KL

 1, AD ⊥ BC ; DB = DC

 2, DH = DK ; AD là đường trung trực HK.

 3. BAD = ?

Bg:

1, Xét △BAD và △CAD

Có: AB = AC (gt)

    BAD = DAC (gt)

   AD là cạnh chung

=> △BAD = △CAD (c.g.c)

=> ADB = CDA (2 góc tương ứng)

Ta có: ADB + CDA = 180o (2 góc kề bù)

=> ADB = CDA = 180o/2 = 90o

=> AD ⊥ BC

 Vì △BAD = △CAD (cmt)

=> DB = CD (2 cạnh tương ứng)

Mà D nằm giữa B, C

=> D là trung điểm của BC

2, Xét △HAD vuông tại H và △KAD vuông tại K

Có: AD là cạnh chung

       HAD = DAK (gt)

=> △HAD = △KAD (ch-gn)

=> DH = DK (2 cạnh tương ứng)  

và AH = AK (2 cạnh tương ứng)   

=> A và D cách đều 2 mút H, K của đoạn thẳng HK

=> A, D nằm trên đường trung trực của đoạn thẳng HK hay AD là đường trung trực của đoạn thẳng HK (định lí 2)

3, Vì Am là tia phân giác của BAC

=> 2BAD = 2DAC = BAC = 4B

Ta có: BAC = 4B => BAC/4 = B

Xét △BAD vuông tại D 

Có: BAD + ABD = 90o (tổng 2 góc nhọn trong tam giác vuông)

\(\Rightarrow\widehat{BAD}+\frac{\widehat{BAC}}{4}=90^o\)\(\Rightarrow\widehat{BAD}+\frac{2\widehat{BAD}}{4}=90^o\)\(\Rightarrow\widehat{BAD}+\frac{\widehat{BAD}}{2}=90^o\)\(\Rightarrow\widehat{BAD}\left(1+\frac{1}{2}\right)=90^o\)\(\Rightarrow\widehat{BAD}.\frac{3}{2}=90^o\)\(\Rightarrow\widehat{BAD}=60^o\)

10 tháng 1

loading... a) Do AD là tia phân giác của ∠BAC (gt)

⇒ ∠BAD = ∠CAD

Do ∆ABC cân tại A

⇒ AB = AC

Xét ∆ABD và ∆ACD có:

AB = AC (cmt)

∠BAD = ∠CAD (cmt)

AD là cạnh chung

⇒ ∆ABD = ∆ACD (c-g-c)

⇒ BD = CD

⇒ D là trung điểm của BC (1)

Do ∆ABD = ∆ACD (cmt)

⇒ ∠ADB = ∠ADC (hai góc tương ứng)

Mà ∠ADB + ∠ADC = 180⁰ (kề bù)

⇒ ∠ADB = ∠ADC = 180⁰ : 2 = 90⁰

⇒ AD ⊥ BC (2)

Từ (1) và (2) ⇒ AD là đường trung trực của BC

b) Sửa đề: Chứng minh ∆ADM = ∆ADN

Do ∠BAD = ∠CAD (cmt)

⇒ ∠MAD = ∠NAD

Xét ∆ADM và ∆ADN có:

AD là cạnh chung

∠MAD = ∠NAD (cmt)

AM = AN (gt)

⇒ ∆ADM = ∆ADN (c-g-c)

⇒ ∠AMD = ∠AND = 90⁰ (hai góc tương ứng)

⇒ DN ⊥ AN

⇒ DN ⊥ AC

d) Do K là trung điểm của CN (gt)

⇒ CK = KN

Xét ∆DKC và ∆EKN có:

CK = KN (cmt)

∠DKC = ∠EKN (đối đỉnh)

KD = KE (gt)

⇒ ∆DKC = ∆EKN (c-g-c)

⇒ ∠KDC = ∠KEN (hai góc tương ứng)

Mà ∠KDC và ∠KEN là hai góc so le trong

⇒ EN // CD

⇒ EN // BC (3)

∆AMN có:

AM = AN (gt)

⇒ ∆AMN cân tại A

⇒ ∠AMN = (180⁰ - ∠MAN) : 2

= (180⁰ - ∠BAC) : 2 (4)

∆ABC cân tại A (gt)

⇒ ∠ABC = (180⁰ - ∠BAC) : 2 (5)

Từ (4) và (5) ⇒ ∠AMN = ∠ABC

Mà ∠AMN và ∠ABC là hai góc đồng vị

⇒ MN // BC (6)

Từ (3) và (6) kết hợp với tiên đề Euclide ⇒ M, N, E thẳng hàng

13 tháng 7 2018

cần cm IB=KM từ đó có AI=AK . suy ra tgAPK cân tại A. suy ra góc AKP=gocsIAD. từ đó có dpcm

24 tháng 12 2021

a: Xét ΔABD và ΔACD có

AB=AC

AD chung

BD=CD

Do đó: ΔABD=ΔACD

13 tháng 7 2020

a) Xét tam giác ABD và tam giác HBD có : 
               góc ABD = góc HBD (BD là tia pg)
             góc BAD = góc BHD=90 độ (gt)
                  BD là cạnh chung
=> Tam giác ABD  = Tam giác HBD (CH-GN)
=> AD = DH ( 2 cạnh tương ứng )

b) Xét tam giác DHC có : 
Góc DHC = 90 độ => DC là cạnh huyền => DC > DH
Ta lại có : AD=DH ( cm ở câu a )
=> DC>AD 

a: Xét tứ giác AHDK có

\(\widehat{AHD}=\widehat{AKD}=\widehat{KAH}=90^0\)

=>AHDK là hình chữ nhật

Hình chữ nhật AHDK có AD là phân giác của góc HAK

nên AHDK là hình vuông