Tìm x,y\(\in Q\)biết
\(2^x=4^{y-1}\)và \(27^y=3^{x+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+1.3y=123
<=>2x+1.3y=(22)3.33
<=> 2x+1=26 và 3y=33
<=>x+1=6 và y=3
<=>x=5 và y=3
b) 10x : 5y=20y
<=>10x=20y.5y=100y=(102)y
<=>x=2y (Nhiều số lắm chèn)
c) 2x=4y-1
<=>2x=2y-2
<=>x=y-2
Mặt khác: 27y=3x+8
<=> 33y=3x+8
<=>3y=x+8
<=>3y=(y-2)+8
<=>2y=6
<=>y=3
=>x=y-2=3-2=1
\(\text{a)}\)\(2^{x+1}.3^y=2^{2x}.3^x\Leftrightarrow\frac{2^{2x}}{2^{x+1}}=\frac{3^y}{3^x}\)
\(\Leftrightarrow2^{x-1}=3^{y-x}\)
\(\Leftrightarrow x-1=y-x=0\)
\(\Leftrightarrow x=y=1\)
a) \(\Rightarrow10^x=20^y.5^y\)
\(\Rightarrow10^x=100^y\)
\(\Rightarrow10^x=10^{2y}\)
\(\Rightarrow x=2y\)
Vậy mọi x=2y đều thỏa mãn
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{\left(x+y+z\right)-\left(4+6+8\right)}{2+3+4}=\frac{27-18}{9}=1\)
\(\Rightarrow x-4=2\Rightarrow x=6\)
\(\Rightarrow y-6=3\Rightarrow y=9\)
\(\Rightarrow z-8=4\Rightarrow z=12\)
Ta có : \(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}\) và \(x+y+z=27\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x-4}{2}=\frac{y-6}{3}=\frac{z-8}{4}=\frac{x+y+z-18}{2+3+4}=1\)
\(\Leftrightarrow\frac{x-4}{2}=1\Rightarrow x=6\)
\(\Leftrightarrow\frac{y-6}{3}=1\Rightarrow y=9\)
\(\Leftrightarrow\frac{z-8}{4}=1\Rightarrow z=12\)
Vậy x = 6 ; y = 9 ; z = 12
Ta có:2x=4y-1=>2x=(22)y-1=22.(y-1)
=>x=2.(y-1)
=>3x=6.(y-1)
27y=3x+8=>27y=3x+5.33=3x+5.27=>27y:27=27y-1=3x+5=>(33)y-1=3x+5=>33.(y-1)=3x+5
=>3.(y-1)=x+5
=>6.(y-1)=2x+10=3x
=>2x+10=3x
=>3x-2x=10
=>x=10
=>y=10:2+1=6
Vậy x=10, y=6
\(2^x=4^{y-1};27^y=3^{x+8}\)
=> \(2^x=2^{2\left(y-1\right)};3^{3y}=3^{x+8}\)
=> \(x=2\left(y-1\right);3y=x+8\)
Thay x = 2(y-1) vào phương trình 3y=x+8 ta có:
3y = 2(y-1) + 8
3y = 2y - 2 +8
3y - 2y = 6
y=6
=> x = 2(y-1) = 2(6-1) = 10
Kết luận: x = 10; y=6
CÁC BẠN ƠI GIẢI CHO MÌNH CÂU NÀY VỚI :
TÌM 2 SỐ TỰ NHIÊN X, Y THỎA MÃN :
X( 2Y - 1 ) = 5 - Y
\(2^x=4^{y-1}\)
\(\Rightarrow2^x=\left(2^2\right)^{y-1}\)
\(\Rightarrow x=2\left(y-1\right)\Rightarrow x=2y-2\)(1)
\(27^y=3^{x+8}\)
\(\Rightarrow\left(3^3\right)^y=3^{x+8}\Rightarrow3y=x+8\)(2)
Từ (1) và (2), ta có:
\(x+8-x=3y-\left(2y-2\right)\)
\(\Rightarrow8=y+2\Rightarrow y=6\)
Mà \(x=2y-2\Rightarrow x=2.6-2=10\)
Vậy x = 10 và y = 6
2x = 4y-1;27y=3x+8
2x= (22)y-1; (33)y = 3x+8
2x= 22y-2; 33y= 3x+8
=> x=2y-2; 3y=x+8
Thay x=2y-2 vào 3y=x+8 ta có:
3y= 2y-2 +8
3y-2y=8-2
y=6
=> x= 2y-2 = 12-2=10
Vậy x=10
y=6