tim so tu nhien n :[n+13] chia het [n+5] [n>5]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
n + 13 chia hết cho n - 5
=> (n - 5) + 18 chia hết cho n - 5
mà n - 5 chia hết cho n - 5
=> 18 chia hết cho n - 5
=> \(n-5\in\left\{1;2;3;6;9;18\right\}\)
=> \(n\in\left\{6;7;8;11;14;23\right\}\)
Theo đề ta có: n+13 chia hết cho n+3
=> n+3+10 chia hết cho n+3
mà n+3 chia hết cho n+3
nên 10 chia hết cho n+3
Suy ra n+3 thuộc Ư(10)={1;-1;2;-2;5;-5;10;-10}
Ta có bảng
n+3 | -1 | 1 | -2 | 2 | -5 | 5 | -10 | 10 |
n | -4 | -2 | -5 | -1 | -8 | 2 | -13 | 7 |
Vậy n ={ -4; -2; -5; -1; -8; 2; -13; 7}
Để n lớn nhất thì n chính là số các thừa số 5 xuất hiện trong tích các số từ 1 đến 1000
Xét 5n < 1000 . ta có: 54 = 625 < 1000 < 55
- Tìm các số chia hết cho 5 từ 1 đến 1000 gồm: 5; 10; 15;....;1000
=> có (1000 - 5) : 5 + 1 = 200 số
- tìm các số chia hết cho 25 (Vì 25 = 5.5) gồm: 25; 50; ...; 1000
=> có: (1000 - 25) : 25 + 1 = 40 số
- Tìm các số chia hết cho 125 (125 = 5.5.5) gồm: 125; 250;...; 1000
=> có : (1000 - 125): 125 + 1 = 8 số
- Tìm các số chia hết cho 625 (625 = 5.5.5.5) gồm: 625 => có 1 số
Vì những số chia hết cho 625 sẽ chia hết cho 125 ; 125; 25; 5 nên trong cách tính trên có đếm trùng
Vậy có : 1 số chia hết cho 625; => có 4 số 5 trong tích
7 số chia hết cho 125 => có 7.3 = 21 số 5 trong tích
32 số chia hết cho 25 => có 32 x 2 = 64 số 5 trong tích
200 - 40 = 160 số chỉ chia hết cho 5 => có 160.1 = 160 số 5 trong tích
Vậy có tất cả: 4 + 21 + 64 + 160 = 249 thừa số 5 trong tích
Vậy n lớn nhất = 249
Vì n+5 chia hết cho n-2
=>n+5/n-2 là số tự nhiên
Mà n+5/n-2=n-2+7/n-2=1+7/n-2
=>7 chia hết cho n-2 hay n-2 thuộc tập hợp Ư(7)
Ư(7)={1;7}
Ta có:
n-2 1 7
n 3 9
Vậy n thuộc {3;9}
n - 2 + 7 chia hết cho n - 2
Mà n - 2 chia hết cho n - 2
=> 7 chia hết cho n - 2
n - 2 thuộc Ư(7) = (-7;-1;1;7)
n - 2 =-7 => n= -5
n-2 = -1 => n=1
n-2=1 => n=3
n-2 =7 =>n=9
Vậy n thuộc: ( -5;1;3;9)
n + 5 chia hết cho n + 2
=> n + 2 + 3 chia hết cho n + 2
Do n + 2 chia hết cho n + 2 => 3 chia hết cho n + 2
Mà \(n\in N\)=> \(n+2\ge2\)=> n + 2 = 3
=> n = 1
n + 5 chia hết cho n + 2
=> n + 2 + 3 chia hết cho n + 2
Do n + 2 chia hết cho n + 2 => 3 chia hết cho n + 2
Mà $n\in N$
=> $n+2\ge2$
=> n + 2 = 3
=> n = 1