a) \(43^{43}\) - \(17^{17}\) \( ⋮ \) \(10\)
b) \(10^n + 5^3\) \( ⋮ \) \(9\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 10n có tổng các chữ số bằng 1 (\(\forall n\in N\)) (1)
53 = 125 (tổng các chữ số bằng 8) (2)
Từ (1),(2) => 10n + 53 có tổng các chữ số bằng 9 \(⋮9\)
@Hưng Nguyễn
a, Đặt A = 10n + 53
=> A = 1000......0(có n số 0) + 125
=> Tổng các chữ số của A là 1 + 0 + 0 + 0 + ....+ 1 + 2 +5 = 9
Mà 9 chia hết cho 9
=> A chia hết cho 9
a ) Đặt B = 10^n + 5^3
= 10^n + 125
Tổng các chữ số của B là 1 + 1 + 2 + 5 = 9
Mà 9 chia hết cho 9
=> B chia hết cho 9
b ) 43^43 - 17^17 chia hết cho 10
Có 43^1 = 43
43^5 = ....3
43^9 = ....3
...
Ta thấy các mũ số cứ cách nhau 4 đơn vị . Mà ( 43 - 1 ) : 4 = 10 ( dư 2 ) nên tận cùng của 43^43 là 3 . 3 . 3 = 27
=> 43^43 có tận cùng là 7
Tương tự với 17^17 ta có kết quả là 7
Vì 7 - 7 = 0 nên 43^43 - 17^17 chia hết cho 10 ( do số có tận cùng là 0 thì chia hết cho 10 )
b)4343-1717=(434)10.433-(174)4.17=(.............1).79507-(..............1).17=(...............7)-(...............)=...............0
=>4343-1717 chia hết cho 10
a, 10^n + 5^3 = (1000.......00) + 125=M
Tổng c/s của M là : 1+0+0+0+.......+0+1+2+5 = 9 * 9
vậy 10^n + 5^3 * 9
b, 43^43 - 17^17 = 43^40 . 43^3 - 17^16 . 17 = (.....1) . (......7) - (......1) . (......7) = (....7) - (....7) = (.....0) * 10
vậy 43^43 - 17^17 * 10
( dấu * là dấu chia hết nha , tick nha bạn)
a, 10^n + 5^3 = (1000.......00) + 125=M
Tổng c/s của M là : 1+0+0+0+.......+0+1+2+5 = 9 * 9
vậy 10^n + 5^3 * 9
b, 43^43 - 17^17 = 43^40 . 43^3 - 17^16 . 17 = (.....1) . (......7) - (......1) . (......7) = (....7) - (....7) = (.....0) * 10
vậy 43^43 - 17^17 * 10
( dấu * là dấu chia hết )
a) Ta có 53 = 125. Nếu n>3 thì 10n + 125 = 100..0125 có tổng các chữ số là 1 + 1 + 2 + 5 = 9 chia hết cho 9. Vậy số 10n + 125 chia hết cho 9.
Xét trường hợp đặc biệt, n = 0; n = 1; n = 2 thì 10n + 125 bằng 126; 136; 225 đều là các số chia hết cho 9.
Vậy với mọi số tự nhiên n, 10n + 125 chia hết cho 9
b) Ta có 431 = 43; 432 = ..9 (tận cùng là 9); 433 = ..7; 434 = ...1; 435 = ...3 =>
434k+1 = ...3; 434k+2 = ...9; 434k+3 = ...7; 434k = ...1;
Mà 43 = 4.10 + 3 => 4343 = 434.10+3 = ...7 (tận cùng là 7)
Tương tự ta có 1717 cũng có tận cùng là 7
Suy ra 4343 - 1717 tận cùng là 0, chia hết cho 10
a) Ta có 53 = 125. Nếu n>3 thì 10n + 125 = 100..0125 có tổng các chữ số là 1 + 1 + 2 + 5 = 9 chia hết cho 9. Vậy số 10n + 125 chia hết cho 9.
Xét trường hợp đặc biệt, n = 0; n = 1; n = 2 thì 10n + 125 bằng 126; 136; 225 đều là các số chia hết cho 9.
Vậy với mọi số tự nhiên n, 10n + 125 chia hết cho 9
b) Ta có 431 = 43; 432 = ..9 (tận cùng là 9); 433 = ..7; 434 = ...1; 435 = ...3 =>
434k+1 = ...3; 434k+2 = ...9; 434k+3 = ...7; 434k = ...1;
Mà 43 = 4.10 + 3 => 4343 = 434.10+3 = ...7 (tận cùng là 7)
Tương tự ta có 1717 cũng có tận cùng là 7
Suy ra 4343 - 1717 tận cùng là 0, chia hết cho 10
a) Ta có :
\(10^n=100.....000\) (\(n\) chữ số \(0\)) có tổng các chữ số là \(1\)
Lại có : \(5^3=125\) có tổng các chữ số là \(8\)
\(\Rightarrow10^n+5^3\) có tổng các chữ số là \(9\)
\(\Rightarrow10^n+5⋮9\rightarrowđpcm\)
~ Chúc bn học tốt ~
b) Số có tận cùng là \(3\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là chữ số \(1\)
Do đó : \(43^{43}=43^{4.10+3}=43^{4.10}+43^3=\left(......1\right)\left(...7\right)=\left(...7\right)\)
Số có tận cùng là \(7\) khi nâng lên lũy thừa mũ \(4n\) sẽ có tận cùng là \(1\)
Do đó : \(17^{17}=17^{4.4+1}=17^{4.4}+17^1=\left(...1\right)\left(....7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(....7\right)-\left(...1\right)=\left(...0\right)\)
\(\Rightarrow43^{43}-17^{17}⋮10\rightarrowđpcm\)
~ Học tốt ~
mk làm phần b nhé
10n luôn có tổng các số hạng là 1
53 = 125
⇒ tổng các số hạng trong biểu thức là 126⋮9
⇒ 10n + 53 ⋮ 9 (đpcm)