K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2018

Ta có:\(y^3=x^3+x^2+x+1=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)(1)

Lại có:\(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-1-x-x^2-x^3=5x^2+11x+7=\left(\sqrt{5}x+\dfrac{11}{2\sqrt{5}}\right)^2+\dfrac{19}{20}>0\)

\(\Rightarrow\left(x+2\right)^3>y^3\left(2\right)\)

Từ (1),(2) và yEZ\(\Rightarrow y^3=\left(x+1\right)^3\)

\(\Rightarrow1+x+x^2+x^3=x^3+3x^2+3x+1\)

\(\Leftrightarrow2x^2+2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=0\end{matrix}\right.\)

ta có:

\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)

\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)

<=>x=0=>2y=1=>y=0

Vậy nghiệm của pt:(x;y)=(0;0)

23 tháng 11 2020

\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))

TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)

TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)

TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)

31 tháng 7 2016

\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)(*)
Đặt \(y^2+3y+\frac{3}{2}=a\)
khi đó : (*) \(x^2=\left(a-\frac{3}{2}\right)\left(a+\frac{3}{2}\right)=a^2-\frac{9}{4}\Leftrightarrow\left(4x-4a\right)\left(x+a\right)=-9\)
Lập bảng là ok nhé 
 

\(x^3+x^2+x+1=2003^y\)y

\(\left(x^3+x^2\right)+\left(x+1\right)=2003^y\)

\(x^2\left(x+1\right)+\left(x+1\right)=2003^y\)

\(\left(x^2+1\right)\left(x+1\right)=2003^y\)

\(\left(x+1\right)^2\left(x-1\right)=2003^y\)

\(x^4=2003^y\)

11 tháng 9 2020

Bạn có thể giải thích cho mình sao (x2 + 1)(x+1) <=> (x+1)(x-1) <=> x4