Tìm nghiệm nguyên của pt
1+x+\(x^2\)+\(x^3\)=\(y^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(x^3+3x^2+3x+1\ge x^3+x^2+x+1>x^3\)
\(\Rightarrow\left(x+1\right)^3\ge x^3+x^2+x+1>x^3\Rightarrow\left(x+1\right)^3=x^3+x^2+x+1\)
<=>x=0=>2y=1=>y=0
Vậy nghiệm của pt:(x;y)=(0;0)
\(x^2+y^3-3y^2=65-3y\Leftrightarrow x^2+\left(y-1\right)^3=64=0^2+4^3=8^2+0^3=\left(-8\right)^2+0^3\)( Vì \(x,y\inℤ\))
TH1: \(\hept{\begin{cases}x=0\\y-1=4\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\y=5\end{cases}}}\)
TH2: \(\hept{\begin{cases}x=8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=1\end{cases}}}\)
TH3: \(\hept{\begin{cases}x=-8\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-8\\y=1\end{cases}}}\)
\(x^2=y\left(y+1\right)\left(y+2\right)\left(y+3\right)\Leftrightarrow x^2=\left(y^2+3y\right)\left(y^2+3y+2\right)\)(*)
Đặt \(y^2+3y+\frac{3}{2}=a\)
khi đó : (*) \(x^2=\left(a-\frac{3}{2}\right)\left(a+\frac{3}{2}\right)=a^2-\frac{9}{4}\Leftrightarrow\left(4x-4a\right)\left(x+a\right)=-9\)
Lập bảng là ok nhé
\(x^3+x^2+x+1=2003^y\)y
\(\left(x^3+x^2\right)+\left(x+1\right)=2003^y\)
\(x^2\left(x+1\right)+\left(x+1\right)=2003^y\)
\(\left(x^2+1\right)\left(x+1\right)=2003^y\)
\(\left(x+1\right)^2\left(x-1\right)=2003^y\)
\(x^4=2003^y\)
Ta có:\(y^3=x^3+x^2+x+1=x^3+\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>x^3\)(1)
Lại có:\(\left(x+2\right)^3-y^3=x^3+6x^2+12x+8-1-x-x^2-x^3=5x^2+11x+7=\left(\sqrt{5}x+\dfrac{11}{2\sqrt{5}}\right)^2+\dfrac{19}{20}>0\)
\(\Rightarrow\left(x+2\right)^3>y^3\left(2\right)\)
Từ (1),(2) và yEZ\(\Rightarrow y^3=\left(x+1\right)^3\)
\(\Rightarrow1+x+x^2+x^3=x^3+3x^2+3x+1\)
\(\Leftrightarrow2x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=0\end{matrix}\right.\)