chứng minh rằng nếu x^2+y^2+1=xy+x+y thì x=y=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2\)
\(-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(\Rightarrow B=x^2+2+\frac{1}{x^2}+y^2+2+\frac{1}{y^2}+x^2y^2+2+\frac{1}{x^2y^2}-x^2y^2\)
\(-2-x^2-y^2-\frac{1}{y^2}-\frac{1}{x^2}-\frac{1}{x^2y^2}\)
\(\Rightarrow B=x^2y^2-x^2y^2+x^2-x^2+1.\frac{1}{x^2}+1.\frac{1}{x^2y^2}-1.\frac{1}{x^2}-1\)
\(.\frac{1}{x^2y^2}+1.\frac{1}{y^2}-1.\frac{1}{y^2}+y^2-y^2+2+2+2-2\)
\(\Rightarrow B=4\)
ta có: \(\left(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right)^2=1^2\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=0\)
\(\Leftrightarrow\left(x\sqrt{1+y^2}+y\sqrt{1+x^2}\right)^2=0\)
\(\Leftrightarrow x\sqrt{1+y^2}+y\sqrt{1+x^2}=0\left(đpcm\right)\)
Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)
Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Vậy ta có đpcm
để cm thì ta cần cm nó đúng khi x+y=1
x+y=1
y=-(x-1) và x=-(y-1)
thế vào ta được
-(x-1)/(x^3-1)--(y-1)/(y^3-1)=2(x-y)/(x^2y^2+3)
ta có x^3-1=(x-1)(x^2+x+1),y^3-1=(y-1)(y^2+y+1)
từ đó rút gọn ta được -1/(x^2+x+1)+1/(y^2+y+1)=2(x-y)/(x^2y^2+3)
1/(y^2+y+1)-1/(x^2+x+1)=2(x-y)/(x^2y^2+3)
(x^2+x+1-y^2-y-1)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)
ta có x^2+x+1-y^2-y-1=x^2-y^2+x-y=(x-y)(x+y)+x-y=(x-y)(x+y+1)=2(x-y)
từ đó suy ra 2(x-y)/(y^2+y+1)(x^2+x+1)=2(x-y)/(x^2y^2+3)
suy ra (y^2+y+1)(x^2+x+1)=x^2+y^2+3
x^2y^2+xy^2+y^2+x^2y+xy+y+x^2+x+1=x^2y^2+3
x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+x+y+1=x^2y^2+3
x^2y^2+(xy^2+y^2+x^2y+xy+x^2)+2=x^2y^2+3
ta có xy^2+y^2+x^2y+xy+x^2
=xy(x+y)+xy+y^2+x^2
=x^2+2xy+y^2
=(x+y)^2
=1^2
=1
thế vào ta được
x^2y^2+3=x^2y^2+3
vậy pt trên đúng khi x+y=1
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho!!
Do x, y >0 nên bất đẳng thức tương đương với :
\(\left[\left(1+x\right)^2+\left(1+y\right)^2\right]\left(1+xy\right)\ge\left(1+x\right)^2\left(1+y\right)^2\)
\(\Leftrightarrow\left(2+2x+2y+x^2+y^2\right)\left(1+xy\right)\ge\left(1+2x+x^2\right)\left(1+2y+y^2\right)\)
\(\Leftrightarrow xy\left(x-y\right)^2+\left(xy-1\right)^2\ge0\)
Bất đẳng thức này luôn đúng
Dấu bằng xảy ra khi x=y=1
Ta có : xy + x + y = -1
=> x(y + 1) + y + 1 = -1 + 1
=> (x + 1)(y + 1) = 0
=> \(\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\)(đpcm)
Vậy nếu xy + x + y = - 1 thì có ít nhất 1 số bằng - 1
xy + x + y = -1
<=> xy + x + y + 1 = 0
<=> x( y + 1 ) + 1( y + 1 ) = 0
<=> ( x + 1 )( y + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-1\end{cases}}\) ( đpcm )
a) x(x² + x) + x(x + 1)
= x²(x + 1) + x(x + 1)
= (x + 1)(x² + x)
= x(x + 1)² ⋮ (x + 1)
b) xy² - yx² + xy
= xy(y - x + 1) ⋮ xy
Sửa đề: x2 + y2 + 2 = xy + x + y thì x = y = 1
Bài làm
ta có: x2 + y2 + 2 = xy + x + y
=> 2x2 + 2y2 + 2 = 2xy + 2x + 2y
=> 2x2 + 2y2 + 2 - 2xy - 2x - 2y = 0
(x2 -2xy+y2) + (x2 -2x + 1) + (y2 -2y+1) = 0
(x-y)2 + (x-1)2 + (y-1)2 = 0
=> x - 1 = 0 => x = 1
y-1 = 0 => y = 1
=> x=y=1
xl nhưng mk nghĩ bn sai đề! nếu như đề ko sai thì cho mk xl, mk ko bk lm đề bn ra
đề bài => (x-y)^2+xy-x-y+1=0
=> ((x-1)-(y-1))^2+ (x-1)(y-1)=0
=> (x-1)^2 - (x-1)(y-1) + 1/4(y-1)^2 +3/4(y-1)^2=0
=> ((x-1)-1/2(y-1))^2+3/4(y-1)^2=0
VT luôn lớn hơn hoặc =0 dấu bằng xảy ra khi x=y=1