Cho Tam giác ABC có M là trung điểm của AB, kẻ MN//BC, với N thuộc cạnh AC. Kẻ NE//AB với E thuộc cạnh BC. CMR
a, MN=BE và BM=NE
b, ĐIểm N là trung điểm của cạnh AC
help me với=((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MNPB có
MN//BP
MB//NP
Do đó: MNPB là hình bình hành
a: Xét tứ giác MNPB có
MN//PB
MB//NP
Do đó: MNPB là hình bình hành
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
Bài rất hay !
a) Xét tam giác ABM và tam giác ANM có
\(\widehat{BAM}\) = \(\widehat{NAM}\) (Vì AM là phân giác góc A)
AB = AN (gt)
Chung AM
=> Tam giác ABM = Tam giác ANM (c.g.c)
b) Ta có \(\widehat{ABM}\)+\(\widehat{EBE}\) = 180 độ
\(\widehat{ANM}\) + \(\widehat{CNM}\) = 180 độ
mà \(\widehat{ABM}\)=\(\widehat{ANM}\)(Vì tam giác ABM = Tam giác ANM)
=> \(\widehat{EBE}\)= \(\widehat{CNM}\)
Lại có BM = NM (Vì tam giác ABM = Tam giác ANM)
Xét tam giác BME và Tam giác NMC có
\(\widehat{EBE}\) =\(\widehat{CNM}\)
BM = NM
\(\widehat{BME}\) = \(\widehat{NMC}\) (Đối đỉnh)
=> Tam giác BME = Tam giác NMC (c.g.c)
=> BE = NC (2 cạnh tương ứng)
c) Xét tam giác ABN
Có AB = AN (gt) => Tam giác ABN cân
=> Đường phân giác cũng là đường cao => AM vuông góc với BN (1)
Ta có BE = NC (cmt)
AB = AN
mà AE = AB+BE, AC = AN + CN
=> AE = AC
=> Tam giác AEC cân
=> đường phân giác cũng là đường cao => AM Vuông góc với EC (2)
Từ (1), (2) => BN // EC (Cùng vuông góc với AM) - đpcm
a: Xét tứ giác MNCP có
MP//CN
MN//CP
Do đó: MNCP là hình bình hành
a) Xét tứ giác MNEB có:
NE//BM(gt)(do NE//AB, \(M\in AB\))
MN//BE(do MN//BC, \(E\in BC\))
=> Tứ giác MNEB là hình bình hành
\(\Rightarrow\left\{{}\begin{matrix}MN=BE\\BM=NE\end{matrix}\right.\)
b) Xét tam giác ABC có:
MN//BC(gt)
Mà M là trung điểm AB(gt)
=> N là trung điểm của AC