chứng minh với mọi p là số nguyên tố >2 thì
p3-p luôn chia hết cho 24
làm nhanh giúp mình!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
P là số nguyên tố lớn hơn 3
=> p không chia hết cho 3
=> p chia 3 dư 1 hoặc p chia 3 dư 2
=> p=3K+1 hoặc p=3K+2 (K\(\in\)\(ℕ^∗\))
+ p=3K+1
(p-1).(p+1)=(3K+1-1).(3K+1+1)=3K.(3K+2) chia hết cho 3 (1)
+p=3K+2
(p-1).(p+1)=(3k+2-1).(3k+2+1)=(3k+1).(3k+3)=(3k+1).3.(k+1) chia hết cho 3 (2)
Từ (1) và (2) suy ra p là số nguyên tố lớn hơn 3 thì chia hết cho 3 (a)
Ta có: p nguyên tố lớn hơn 3
=> P là số lẻ
p-1 là số chẵn
p+1 là số chẵn
=> (p-1).(p+1) chia hết cho 8 (b)
Từ (A) và (b) suy ra p là số ntố lớn hơn 3 thì (p-1).(p+1) chia hết cho 24
a) Ta có : (n + 2)2 - (n - 2)2
= [(n + 2) + (n - 2)][(n + 2) - (n - 2)] (áp dụng hang đẳng thức a2 - b2 = (a + b) (a - b)
= 2n.4
= 8n
Mà n là số tự nhiên => 8n chia hết cho 8
Vậy (n + 2)2 - (n - 2)2 chia hết cho 8
Ta có : (n + 7)2 - (n - 5)2
= [(n + 7) + (n - 5)][(n + 7) - (n - 5]
= (2n + 2).12
= 2(n + 1).12
= 24(n + 1)
Mà n là số nguyên => 24(n + 1) chia hết cho 24
Vậy (n + 7)2 - (n - 5)2 chia hết cho 24
ta có p là số nguyên tố lớn hơn 3 và p=5,7,11,13,17,......
24 là số chẵn mà p2 là số lẻ nên
p2 không chia hết cho 24
(mới lớp 5 không biết nhiều ^^ )
Ta có : n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= 2n2 - 2n2 - 3n - 2n
= -5n
Mà n nguyên nên -5n chia hết cho 5
a, Ta có
n(2n-3)-2n(n+1)=2n2-3n-2n2-2n
=-5n chia hết cho 5
=> DPCM
b, Ta có (2m-3)(3n-2)-(3m-2)(2n-3)
Lại có (2m-3)(3n-2)=-(3-2m)(3-2n)=(3-2m)(2n-3)
=> (2m-3)(3n-2)-(3m-2)(2n-3)=(2m-3)(3n-2)-(2m-3)(3-2n)=0
=> (2m-3)(3n-2)-(3m-2)(2n-3)=0
=>(2m-3)(3n-2)-(3m-2)(2n-3) chia hết cho 5
=> DPCM