Giải pt
9x2 +30 - 14 = 5(3x-4)\(\sqrt{ }\)9x-5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: \(x\ge-\dfrac{5}{3}\)
\(9x^2-3x-\left(3x+5\right)-\sqrt{3x+5}=0\)
Đặt \(\sqrt{3x+5}=t\ge0\)
\(\Rightarrow9x^2-3x-t^2-t=0\)
\(\Delta=9+36\left(t^2+t\right)=\left(6t+3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3+6t+3}{18}=\dfrac{t+1}{3}\\x=\dfrac{3-6t-3}{18}=-\dfrac{t}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}t=3x-1\\t=-3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{3x+5}=3x-1\left(x\ge\dfrac{1}{3}\right)\\\sqrt{3x+5}=-3x\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+5=9x^2-6x+1\left(x\ge\dfrac{1}{3}\right)\\3x+5=9x^2\left(x\le0\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
c.
ĐKXĐ: \(x\ge-5\)
\(x^2-3x+2-x-5-\sqrt{x+5}=0\)
Đặt \(\sqrt{x+5}=t\ge0\)
\(\Rightarrow-t^2-t+x^2-3x+2=0\)
\(\Delta=1+4\left(x^2-3x+2\right)=\left(2x-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{1+2x-3}{-2}=1-x\\t=\dfrac{1-2x+3}{-2}=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=1-x\left(x\le1\right)\\\sqrt{x+5}=x-2\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=x^2-2x+1\left(x\le1\right)\\x+5=x^2-4x+4\left(x\ge2\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)
\(\Leftrightarrow\left(3x-2\right)\left[\left(3x\right)^2+3x\cdot2+2^2\right]-\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1\right]=x-4\)
\(\Leftrightarrow\left(3x\right)^3-2^3-\left[\left(3x\right)^3-1\right]=x-4\)
\(\Leftrightarrow x=-3\) ( thỏa mãn )
P/s : Đề câu b) viết lại nhé, mình không hiểu lắm :))
\(9\left(2x+1\right)=4\left(x-5\right)^2\)
\(\Leftrightarrow18x+9=4\left(x^2-10x+25\right)\)
\(\Leftrightarrow18x+9=4x^2-40x+100\)
\(\Leftrightarrow4x^2-58x+91=0\)
Ta có \(\Delta=58^2-4.4.91=1908,\sqrt{\Delta}=6\sqrt{53}\)
\(\Rightarrow x=\frac{58\pm6\sqrt{53}}{8}\)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
a) Ta có: \(\sqrt{25x+75}+3\sqrt{x-2}=2\sqrt{x-2}+\sqrt{9x-18}\)
\(\Leftrightarrow5\sqrt{x+3}+3\sqrt{x-2}=2\sqrt{x-2}+3\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{25x+75}=\sqrt{4x-8}\)
\(\Leftrightarrow25x-4x=-8-75\)
\(\Leftrightarrow21x=-83\)
hay \(x=-\dfrac{83}{21}\)
b) Ta có: \(\sqrt{\left(2x-1\right)^2}=4\)
\(\Leftrightarrow\left|2x-1\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=4\\2x-1=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c) Ta có: \(\sqrt{\left(2x+1\right)^2}=3x-5\)
\(\Leftrightarrow\left|2x+1\right|=3x-5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=3x-5\left(x\ge-\dfrac{1}{2}\right)\\2x+1=5-3x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3x=-5-1\\2x+3x=5-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=\dfrac{4}{5}\left(loại\right)\end{matrix}\right.\)
d) Ta có: \(\sqrt{4x-12}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-3}-2\sqrt{x-2}=3\sqrt{x-2}+8\)
\(\Leftrightarrow2\sqrt{x-3}-5\sqrt{x-2}=8\)
\(\Leftrightarrow4\left(x-3\right)+25\left(x-2\right)-20\sqrt{x^2-5x+6}=8\)
\(\Leftrightarrow4x-12+25x-50-8=20\sqrt{\left(x-2\right)\left(x-3\right)}\)
\(\Leftrightarrow20\sqrt{\left(x-2\right)\left(x-3\right)}=29x-70\)
\(\Leftrightarrow x^2-5x+6=\dfrac{\left(29x-70\right)^2}{400}\)
\(\Leftrightarrow x^2-5x+6=\dfrac{841}{400}x^2-\dfrac{203}{20}x+\dfrac{49}{4}\)
\(\Leftrightarrow\dfrac{-441}{400}x^2+\dfrac{103}{20}x-\dfrac{25}{4}=0\)
\(\Delta=\left(\dfrac{103}{20}\right)^2-4\cdot\dfrac{-441}{400}\cdot\dfrac{-25}{4}=-\dfrac{26}{25}\)(Vô lý)
vậy: Phương trình vô nghiệm
Đặt y = \(x+1=\sqrt[3]{8+2\sqrt{14}}+\sqrt[3]{8-2\sqrt{14}}\)
=> \(y^3=8+2\sqrt{14}+8-2\sqrt{14}+3\sqrt[3]{\left(8+2\sqrt{14}\right)\left(8-2\sqrt{14}\right)}.y\)
<=> \(y^3=16+6y\)
=> \(\left(x+1\right)^3=16+6\left(x+1\right)\)
=> \(x^3+3x^2+3x+1=6x+32\)
<=> \(x^3+3x^2-3x-5=26\)
Ta có:
\(x^6+3x^5-3x^4-2x^3+9x^2-9x+2018\)
= \(x^6+3x^5-3x^4-5x^3+3x^3+9x^2-9x-15+2033\)
= \(\left(x^3+3x^2-3x-5\right)\left(x^3+3\right)+2033\)
= \(26x^3+2111\)
\(=26\left(\sqrt[8]{8+2\sqrt{14}}+\sqrt[8]{8-2\sqrt{14}}-1\right)^3+2033\)
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
Giải pt :
(3x-2)(9x2+6x+4)-(3x-1)(9x2-3x+1)=x-4
9(2x+1)=4(x-5)2
\(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
\(\Leftrightarrow\left(5-x\right)\left(2+3x\right)=\left(2-3x\right)\left(2+3x\right)\)
\(\Leftrightarrow\left(5-x\right)\left(2+3x\right)-\left(2-3x\right)\left(2+3x\right)=0\)
\(\Leftrightarrow\left(2+3x\right)\left(5-x-2+3x\right)=0\)
\(\Leftrightarrow\left(2+3x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2+3x=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-\dfrac{2}{3};-\dfrac{3}{2}\right\}\)
Phương trình trên tương đương:
(5-x)(2+3x)=(2-3x)(2+3x)
(5-x)(2+3x)-(2-3x)(2+3x)=0
Đặt 2+3x làm nhân tử chung rồi giải pt tích rồi kết luận