Cho tam giác vuông ABC tại A, biết BC=15cm,AB/AC=3/4. Kẻ đường cao AH, trên tia đối của tia AH lấy D sao cho H là trung điểm của AD. Trên tia đối của CD lấy điểm E sao cho CD=CE.
Khi đó AE bằng bao nhiêu ????????
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
=>BC=DE
b: Xét ΔABD vuông tại A có AB=AD
nên ΔABD vuông cân tại A
=>\(\widehat{ABD}=\widehat{ADB}=45^0\)
Xét ΔAEC vuông tại A có AE=AC
nên ΔAEC vuông cân tại A
=>\(\widehat{AEC}=\widehat{ACE}=45^0\)
Ta có: \(\widehat{ABD}=\widehat{AEC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên BD//CE
a: Đặt AB/3=AC/4=k
=>AB=3k; AC=4k
Xét ΔBAC vuông tại A có \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow25k^2=100\)
=>k=2
=>AB=6cm; AC=8cm
b: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đo: ΔCAD cân tại C
hay CA=CD
Xét ΔBAD có
BH là đườg cao
BH là đường trung tuyến
Do đo:ΔBAD cân tại B
Xét ΔCAB và ΔCDB có
CA=CD
AB=DB
CB chung
Do đó: ΔCAB=ΔCDB
Suy ra: \(\widehat{CAB}=\widehat{CDB}=90^0\)
hay ΔBDC vuông tại D
c: Xét ΔDAE có
C là trung điểm của DE
H là trung điểm của DA
DO đó:CH là đường trung bình
=>CH//AE
hay AE//BC
a) xét tam giác AMB và tam giác CMD có:
AM = MD (gt)
góc AMB = góc CMD (đối đỉnh)
BM = M (gt)
=> tam giác AMB = tam giác CMD (c.g.c)
=> góc MBA = góc MCD (góc tương ứng)
=> CD // AB
t i c k nhé!! 436356547467
a, Xét tứ giác ABCD có :
MA=MD( gt)
MB=MC ( gt)
=> tứ giác ABCD là hbh ( dhnb)
mà góc BAC =90 ( gt)
=> hbh ABCD là hcn( dhnb)
=> CD//AB( t/c)
1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)
Suy ra: BC=DE(hai cạnh tương ứng)
2) Xét ΔABD có AB=AD(gt)
nên ΔABD cân tại A(Định nghĩa tam giác cân)
Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)
nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)