K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1) 

Ta có: x+y=2

nên \(\left(x+y\right)^2=4\)

\(\Leftrightarrow x^2+y^2+2xy=4\)

\(\Leftrightarrow2xy=2\)

hay xy=1

Ta có: \(x^3+y^3\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)\)

\(=2^3-3\cdot1\cdot2\)

=2

2)\(x^2+y^2=\left(x+y\right)^2-2xy=8^2-2\cdot\left(-20\right)=104\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=8^3-3\cdot\left(-20\right)\cdot8=512+480=992\)

\(x^2+y^2+xy=\left(x+y\right)^2-xy=8^2-\left(-20\right)=64+20=84\)

31 tháng 10 2021

a: \(=\left(x-y\right)\left(x+y\right)\)

\(=74\cdot100=7400\)

c: \(=\left(x+2\right)^3\)

\(=10^3=1000\)

31 tháng 10 2021

a) \(=\left(x-y\right)\left(x+y\right)\)

    Thay \(x=87;y=13\) ta đc:   \(\left(87-13\right)\left(87+13\right)=74\cdot100=7400\)

b)\(=\left(x-y\right)\left(x^2+xy+y^2\right)=x^3-y^3\)

   Thay \(x=10;y=-1\) ta đc:

    \(10^3-\left(-1\right)^3=1000-1=999\)

c)\(=\left(x+2\right)^3\)

   Thay \(x=8\) ta đc: \(\left(8+2\right)^3=10^3=1000\)

d)\(=x^2-8x+16+1=\left(x-4\right)^2+1\)

   Thay \(x=104\) ta đc: \(\left(104-4\right)^2+1=100^2+1=10001\)

Đẳng thức nào sau đây là đúng:A. (x2−xy+y2)(x+y)=x3−y3B. (x2+xy+y2)(x−y)=x3−y3C. (x2+xy+y2)(x+y)=x3+y3D. (x2−xy+y2)(x−y)=x3+y3Câu 2. Tích của đơn thức −5x3 và đa thức 2x2+3x−5 là:A. 10x5−15x4+25x3B. −10x5−15x4+25x3C. −10x5−15x4−25x3D. .−10x5+15x4−25x3Câu 8. Rút gọn biểu thức B = (x – 2)(x2 + 2x + 4) – x(x – 1)(x + 1) + 3xA. x – 8B. 8 – 4xC. 8 – xD. 4x – 8Câu 9. Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằngA. 24x5 + 20x4 + 12x3 – 4x2B. -24x5 –...
Đọc tiếp

Đẳng thức nào sau đây là đúng:

A. (x2−xy+y2)(x+y)=x3−y3

B. (x2+xy+y2)(x−y)=x3−y3

C. (x2+xy+y2)(x+y)=x3+y3

D. (x2−xy+y2)(x−y)=x3+y3

Câu 2. Tích của đơn thức −5x3 và đa thức 2x2+3x−5 là:

A. 10x5−15x4+25x3

B. −10x5−15x4+25x3

C. −10x5−15x4−25x3

D. .−10x5+15x4−25x3

Câu 8. Rút gọn biểu thức B = (x – 2)(x2 + 2x + 4) – x(x – 1)(x + 1) + 3x

A. x – 8

B. 8 – 4x

C. 8 – x

D. 4x – 8

Câu 9. Kết quả của phép tính -4x2(6x3 + 5x2 – 3x + 1) bằng

A. 24x5 + 20x4 + 12x3 – 4x2

B. -24x5 – 20x4 + 12x3 + 1

C. -24x5 – 20x4 + 12x3 – 4x2

D. -24x5 – 20x4 – 12x3 + 4x2

Câu 10. Tích (2x – 3)(2x + 3) có kết quả bằng

A. 4x2 + 12x+ 9

B. 4x2 – 9

C. 2x2 – 3

D. 4x2 + 9

Câu 11. Chọn câu đúng.

A. (x2 – 1)(x2 + 2x) = x4 – x3 – 2x

B. (x2 – 1)(x2 + 2x) = x4 – x2 – 2x

C. (x2 – 1)(x2 + 2x) = x4 + 2x3 – x2 – 2x

D. (x2 – 1)(x2 + 2x) = x4 + 2x3 – 2x

Câu 12. Tích của đơn thức x2 và đa thức là: A. B. C. D. Câu 13. Rút gọn biểu thức B = (2a – 3)(a + 1) – (a – 4)2 – a(a + 7) ta được

A. 0

B. 1

C. 19

D. – 19

1

Câu 1; B

Câu 2: B

5 tháng 12 2021

\(x+y=4\\ \Leftrightarrow\left(x+y\right)^2=16\\ \Leftrightarrow x^2+y^2+2xy=16\\ \Leftrightarrow10+2xy=16\\ \Leftrightarrow2xy=6\\ \Leftrightarrow xy=3\)

6: \(-x^2y\left(xy^2-\dfrac{1}{2}xy+\dfrac{3}{4}x^2y^2\right)\)

\(=-x^3y^3+\dfrac{1}{2}x^3y^2-\dfrac{3}{4}x^4y^3\)

7: \(\dfrac{2}{3}x^2y\cdot\left(3xy-x^2+y\right)\)

\(=2x^3y^2-\dfrac{2}{3}x^4y+\dfrac{2}{3}x^2y^2\)

8: \(-\dfrac{1}{2}xy\left(4x^3-5xy+2x\right)\)

\(=-2x^4y+\dfrac{5}{2}x^2y^2-x^2y\)

9: \(2x^2\left(x^2+3x+\dfrac{1}{2}\right)=2x^4+6x^3+x^2\)

10: \(-\dfrac{3}{2}x^4y^2\left(6x^4-\dfrac{10}{9}x^2y^3-y^5\right)\)

\(=-9x^8y^2+\dfrac{5}{3}x^6y^5+\dfrac{3}{2}x^4y^7\)

11: \(\dfrac{2}{3}x^3\left(x+x^2-\dfrac{3}{4}x^5\right)=\dfrac{2}{3}x^3+\dfrac{2}{3}x^5-\dfrac{1}{2}x^8\)

12: \(2xy^2\left(xy+3x^2y-\dfrac{2}{3}xy^3\right)=2x^2y^3+6x^3y^3-\dfrac{4}{3}x^2y^5\)

13: \(3x\left(2x^3-\dfrac{1}{3}x^2-4x\right)=6x^4-x^3-12x^2\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2021

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.

8 tháng 4 2017

a) Kết quả M = 0. Chú ý: nhân tử chung là 2f - 5 = 0.

b) Kết quả N = 300000.

c) Kết quả p = 0. Chú ý: nhân tử  x 2  + y -1 = 0.

d) Kết quả Q = 280. Chú ý: Q = (x - y)[ ( x   -   y ) 2  - xy].

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)