Chứng minh bất đẳng thức: \(\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\left(ĐK:a\ge1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a) Đặt VT = A
<=> \(2\sqrt{2}A=\left(8+2\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{8-2\sqrt{15}}\)
<=> \(2\sqrt{2}A=\left(\sqrt{5}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right).\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)
<=> \(2A=\left(\sqrt{5}+\sqrt{3}\right)^2.\left(\sqrt{5}-\sqrt{3}\right)^2\)
<=> 2A = \(\left(5-3\right)^2=4\)
<=> A = 2
b) Đặt VT = B
<=> \(2\sqrt{2}B=\left(10+2\sqrt{21}\right).\left(\sqrt{14}-\sqrt{6}\right)\sqrt{10-2\sqrt{21}}\)
<=> \(2\sqrt{2}B=\left(\sqrt{7}+\sqrt{3}\right)^2.\sqrt{2}\left(\sqrt{7}-\sqrt{3}\right).\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}\)
<=> \(2B=\left(\sqrt{7}+\sqrt{3}\right)^2.\left(\sqrt{7}-\sqrt{3}\right)^2=\left(7-3\right)^2=16\)
<=> B = 8
Bài 2
Đặt VT = A
<=> A2 = \(\dfrac{\sqrt{5}+2+\sqrt{5}-2+2\sqrt{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}}{2}\)
<=> A2 = \(\dfrac{2\sqrt{5}+2\sqrt{5-4}}{2}=\dfrac{2\sqrt{5}+2}{2}=\sqrt{5}+1\)
<=> \(A=\sqrt{\sqrt{5}+1}\)
ĐK: \(a\ge0\)
bđt cần c/m tương đương \(\left(\sqrt{a}+\sqrt{a+2}\right)^2< \left(2\sqrt{a+1}\right)^2\)
\(\Leftrightarrow a+a+2+2\sqrt{a\left(a+2\right)}< 4\left(a+1\right)\)
\(\Leftrightarrow2\sqrt{a^2+2a}< 2\left(a+1\right)\)
\(\Leftrightarrow2\sqrt{a^2+2a}< 2\sqrt{\left(a+1\right)^2}=2\sqrt{a^2+2a+1}\), luôn đúng \(\forall a\ge0\)
Vậy ta có đpcm
Tiện tay chém trước vài bài dễ.
Bài 1:
\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)
Bài 2:
1) Thấy nó sao sao nên để tối nghĩ luôn
2)
c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)
Đẳng thức xảy ra khi a = 0; b = 1
\(\dfrac{2}{xy}-\dfrac{2}{y\left(x+y\right)}-\dfrac{2}{x\left(x+y\right)}=\dfrac{2\left(x+y\right)-2x-2y}{xy\left(x+y\right)}=0\)
\(A=\sqrt{\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{\left(x+y\right)^2}}\)
\(=\sqrt{\left(\dfrac{1}{x}\right)^2+\left(\dfrac{1}{y}\right)^2+\left(\dfrac{1}{x+y}\right)^2+2\times\dfrac{1}{x}\times\dfrac{1}{y}-2\times\dfrac{1}{y}\times\dfrac{1}{x+y}-2\times\dfrac{1}{x}\times\dfrac{1}{x+y}}\)
\(=\sqrt{\left(\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right)}\)
\(=\left|\dfrac{1}{x}+\dfrac{1}{y}-\dfrac{1}{x+y}\right|\left(\text{đ}pcm\right)\)
ĐK: \(a\ge0;a\ne1\)
\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right).\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}.\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\)
\(=\frac{1+2\sqrt{a}+a}{\sqrt{a}+1}.\frac{1-2\sqrt{a}+a}{1-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.\frac{\left(1-\sqrt{a}\right)^2}{1-\sqrt{a}}\)
\(=\left(\sqrt{a}+1\right)\left(1-\sqrt{a}\right)\)
\(=1-a\)
\(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1+\frac{a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\left(\frac{\sqrt{a}+1+a+\sqrt{a}}{\sqrt{a}+1}\right)\left(\frac{1-\sqrt{a}+a-\sqrt{a}}{1-\sqrt{a}}\right)\)
\(=\frac{a+2\sqrt{a}+1}{\sqrt{a}+1}.\frac{a-2\sqrt{a}+1}{1-\sqrt{a}}\)
\(=\frac{\left(\sqrt{a}+1\right)^2}{\sqrt{a}+1}.-\frac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}-1}\)
\(=-\left(\sqrt{a}+1\right).\left(\sqrt{a}-1\right)\)
\(=1-a\)
Ta có:
\(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\)\(\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
Dấu " = " xảy ra ⇔ a=b
\(\Leftrightarrow2\sqrt{a\left(a+1\right)}-2a< 1\)
Lại có:\(2\sqrt{a\left(a+1\right)}\le a+a+1=2a+1\)
\(\Rightarrow2\sqrt{a\left(a+1\right)}-2a\le2a+1-2a=1\)
Dấu "=" không xảy ra
\(\Rightarrow\sqrt{a+1}-\sqrt{a}< \dfrac{1}{2\sqrt{a}}\)(đpcm)
Tại sao dấu "=" không xảy ra ?