1. CMR:\(4a^2+9b^2\ge12ab\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết ông tth SOS như thế nào nhưng mik thì đơn giản thôi ( không có ý định cà khịa nhé người anh em )
Đặt \(x=2a;y=3b;z=5c\)
Khi đó:BĐT cần chứng minh tương đương với:
\(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( đúng )
=> ĐPCM
Áp dụng BĐT Cauchy cho 2 số không âm:
\(4a^2+9b^2\ge2\sqrt{4a^2.9b^2}=2.6ab=12ab\)
\(9b^2+25c^2\ge2\sqrt{9b^2.25c^2}=2.15bc=30bc\)
\(4a^2+25c^2\ge2\sqrt{4a^2.25c^2}=2.10ac=20ac\)
Cộng từng vế của các BĐT trên:
\(2\left(4a^2+9b^2+25c^2\right)\ge2\left(6ab+10ac+15bc\right)\)
\(\Rightarrow4a^2+9b^2+25c^2\ge6ab+10ac+15bc\)
(Dấu "="\(\Leftrightarrow a=b=c=0\))
\(\text{BĐT}\Leftrightarrow\frac{\left(4a-3b-5c\right)^2+3\left(3b-5c\right)^2}{4}\ge0\) (đúng)
Đẳng thức xảy ra khi \(\hept{\begin{cases}4a=3b+5c\\3b=5c\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\4a=10c\end{cases}}\Leftrightarrow a=\frac{3}{2}b=\frac{5}{2}c\)
Không chắc chỗ dấu bằng cho lắm:)
Áp dụng bất đẳng thức Cauchy - Schwarz ta có:
\(\left(4a^2+9b^2\right)\left(2^2+2^2\right)\ge\left(2a.1-3b.2\right)^2=\left(4a-6b\right)^2=1\)
\(\Rightarrow4a^2+9b^2\ge\dfrac{1}{8}\).
Đẳng thức xảy ra khi \(a=\dfrac{1}{8};b=\dfrac{-1}{12}\).
vì 4a + 5b +6c chia hết cho 11 nên a +b +c chia het cho 11
a+b+c chia hết cho 11 nên a chia hết cho 11,b chia hết cho 11 và c chia hết cho 11\(\Rightarrow\)5a+9b+6c chia hết cho 11
Vì 4a+5b+6c chia hết cho 11
=> 6c chia hết cho 11
Ta có:
[3.(5a+9b)+6c]-(4a+5b+6c)=11a+11b+0 chia hết cho 11(vì 6c chia hết 11)
Vậy khi 4a+5b+6c chia hết cho 11 thì 5a+9b+6c chia hết cho 11
a) \(a^2+2a+1-b^2\)
\(=\left(a+1\right)^2-b^2\)
\(=\left(a+1-b\right)\left(a+1+b\right)\)
b) \(4a^2+4a+1-9b^2\)
\(=\left(2a\right)^2+4a+1-\left(3b\right)^2\)
\(=\left(2a+1\right)^2-\left(3b\right)^2\)
\(=\left(2a+1-3b\right)\left(2a+1+3b\right)\)
phá ngoặc lun nà
+4a-5c+3b-2b+a-7c-7b+3c-5a=(4a+a-5a)+(3b-2b-7b)+(-5c-7c+3c)=0-6b-9c=-9c-6b
-2a+3c-b-5b-4c+12a+9b+4c-4a-6a-3b-3c+d=(-2a+12a-4a-6a)+(-b-5b+9b-3b)+(3c-4c+4c-3c)+d=0+0+0+0+d=d
\(4a^2+9b^2\ge12ab\)
\(\left(2a\right)^2+\left(3b\right)^2-12ab\ge0\)
\(\left(2a\right)^2-2\cdot2a\cdot3b+\left(3b\right)^2\ge0\)
\(\left(2a-3b\right)^2\ge0\left(đpcm\right)\)
ta có: 4a2 + 9b2 - 12ab = (2a)2 - 2.2a.3b + (3b)2 = ( 2a-3b)2
mà \(\left(2a-3b\right)^2\ge0\)
\(\Rightarrow4a^2+9b^2-12ab\ge0\Rightarrow4a^2+9b^2\ge12ab\)