giải phương trình \(\sqrt{7-x^2+x\sqrt{x+5}}=\sqrt{3-2x-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:\(x\ge\dfrac{5}{2}\)
Ta có:\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=7.2\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+6}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
\(\Leftrightarrow2\sqrt{2x-5}=10\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow2x-5=25\Leftrightarrow2x=30\Leftrightarrow x=15\left(tm\right)\)
ĐKXĐ: \(x\ge\dfrac{5}{2}\)
\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\sqrt{2x-5}}=14\)
\(\Leftrightarrow\sqrt{2x-5+2\sqrt{2x-5}+1}+\sqrt{2x-5+6\sqrt{2x-5}+3}=14\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
\(\Leftrightarrow2.\sqrt{2x-5}+4=14\)
\(\Leftrightarrow\sqrt{2x-5}=5\)
\(\Leftrightarrow x=15\)
a) \(\sqrt {11{x^2} - 14x - 12} = \sqrt {3{x^2} + 4x - 7} \)
\(\begin{array}{l} \Rightarrow 11{x^2} - 14x - 12 = 3{x^2} + 4x - 7\\ \Rightarrow 8{x^2} - 18x - 5 = 0\end{array}\)
\( \Rightarrow x = - \frac{1}{4}\) và \(x = \frac{5}{2}\)
Thay nghiệm vừa tìm được vào phương trình \(\sqrt {11{x^2} - 14x - 12} = \sqrt {3{x^2} + 4x - 7} \) ta thấy chỉ có nghiệm \(x = \frac{5}{2}\) thảo mãn phương trình
Vậy nhiệm của phương trình đã cho là \(x = \frac{5}{2}\)
b) \(\sqrt {{x^2} + x - 42} = \sqrt {2x - 30} \)
\(\begin{array}{l} \Rightarrow {x^2} + x - 42 = 2x - 3\\ \Rightarrow {x^2} - x - 12 = 0\end{array}\)
\( \Rightarrow x = - 3\) và \(x = 4\)
Thay vào phương trình \(\sqrt {{x^2} + x - 42} = \sqrt {2x - 30} \) ta thấy không có nghiệm nào thỏa mãn
Vậy phương trình đã cho vô nghiệm
c) \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \)
\(\begin{array}{l} \Rightarrow 4.\left( {{x^2} - x - 1} \right) = {x^2} + 2x + 5\\ \Rightarrow 3{x^2} - 6x - 9 = 0\end{array}\)
\( \Rightarrow x = - 1\) và \(x = 3\)
Thay hai nghiệm trên vào phương trình \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \) ta thấy cả hai nghiệm đếu thỏa mãn phương trình
Vậy nghiệm của phương trình \(2\sqrt {{x^2} - x - 1} = \sqrt {{x^2} + 2x + 5} \) là \(x = - 1\) và \(x = 3\)
d) \(3\sqrt {{x^2} + x - 1} - \sqrt {7{x^2} + 2x - 5} = 0\)
\(\begin{array}{l} \Rightarrow 3\sqrt {{x^2} + x - 1} = \sqrt {7{x^2} + 2x - 5} \\ \Rightarrow 9.\left( {{x^2} + x - 1} \right) = 7{x^2} + 2x - 5\\ \Rightarrow 2{x^2} + 7x - 4 = 0\end{array}\)
\( \Rightarrow x = - 4\) và \(x = \frac{1}{2}\)
Thay hai nghiệm trên vào phương trình \(3\sqrt {{x^2} + x - 1} - \sqrt {7{x^2} + 2x - 5} = 0\) ta thấy chỉ có nghiệm \(x = - 4\) thỏa mãn phương trình
Vậy nghiệm của phương trình trên là \(x = - 4\)
nhân cả 2 vế vs căn 2 sau đó cố gắng đưa mấy cá dưới dấu căn về bình phương của 1 số sao đó bỏ dấu căn ( đừng quên đk của x nhé )
a:
ĐKXĐ: x>=5/2
\(\sqrt{x-2+\sqrt{2x-5}}+\sqrt{x+2+3\sqrt{2x-5}}=7\sqrt{2}\)
=>\(\sqrt{2x-4+2\sqrt{2x-5}}+\sqrt{2x+4+6\cdot\sqrt{2x-5}}=14\)
=>\(\sqrt{\left(\sqrt{2x-5}+1\right)^2}+\sqrt{\left(\sqrt{2x-5}+3\right)^2}=14\)
=>\(\sqrt{2x-5}+1+\sqrt{2x-5}+3=14\)
=>\(2\sqrt{2x-5}+4=14\)
=>\(\sqrt{2x-5}=5\)
=>2x-5=25
=>2x=30
=>x=15
b: \(x^2-4x=\sqrt{x+2}\)
=>\(x+2=\left(x^2-4x\right)^2\) và x^2-4x>=0
=>x^4-8x^3+16x^2-x-2=0 và x^2-4x>=0
=>(x^2-5x+2)(x^2-3x-1)=0 và x^2-4x>=0
=>\(\left[{}\begin{matrix}x=\dfrac{5+\sqrt{17}}{2}\\x=\dfrac{3-\sqrt{13}}{2}\end{matrix}\right.\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
1.
ĐKXĐ: \(x< 5\)
\(\Leftrightarrow\sqrt{\dfrac{42}{5-x}}-3+\sqrt{\dfrac{60}{7-x}}-3=0\)
\(\Leftrightarrow\dfrac{\dfrac{42}{5-x}-9}{\sqrt{\dfrac{42}{5-x}}+3}+\dfrac{\dfrac{60}{7-x}-9}{\sqrt{\dfrac{60}{7-x}}+3}=0\)
\(\Leftrightarrow\dfrac{9x-3}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{9x-3}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}=0\)
\(\Leftrightarrow\left(9x-3\right)\left(\dfrac{1}{\left(5-x\right)\left(\sqrt{\dfrac{42}{5-x}}+3\right)}+\dfrac{1}{\left(7-x\right)\left(\sqrt{\dfrac{60}{7-x}}+3\right)}\right)=0\)
\(\Leftrightarrow x=\dfrac{1}{3}\)
b.
ĐKXĐ: \(x\ge2\)
\(\sqrt{\left(x-2\right)\left(x-1\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x-1\right)}-\sqrt{x-2}+\sqrt{x+3}-\sqrt{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)\left(\sqrt{x-2}-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}-1=0\\\sqrt{x-2}-\sqrt{x+3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=1\\x-2=x+3\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow x=2\)
a) đkxđ \(x\ge1\)
pt đã cho \(\Leftrightarrow\left(\sqrt{2x-1}-3\right)+\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}+3}+\dfrac{x-5}{\sqrt{x-1}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(nhận\right)\\\dfrac{2}{\sqrt{2x-1}+3}+\dfrac{1}{\sqrt{x-1}+3}=0\end{matrix}\right.\)
Hiển nhiên pt thứ 2 vô nghiệm vì \(VT>0\) với mọi \(x\ge1\). Do đó pt đã cho có nghiệm duy nhất là \(x=5\)
b) đkxđ: \(x\ge-3\)
Để ý rằng \(x^2+2x+7=\left(x^2+1\right)+\left(2x+6\right)=\left(x^2+1\right)+2\left(x+3\right)\) nên nếu ta đặt \(\sqrt{x^2+1}=u\left(u\ge1\right)\) và \(\sqrt{x+3}=v\left(v\ge0\right)\) thì pt đã chot rở thành:
\(u^2+2v^2=3uv\)
\(\Leftrightarrow\left(u-v\right)\left(u-2v\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}u=v\\u=2v\end{matrix}\right.\)
Nếu \(u=v\) thì \(\sqrt{x^2+1}=\sqrt{x+3}\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=x+3\end{matrix}\right.\)
Mà \(x^2+1=x+3\) \(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\) (nhận)
Nếu \(u=2v\) thì \(\sqrt{x^2+1}=2\sqrt{x+3}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x^2+1=4x+12\end{matrix}\right.\)
mà \(x^2+1=4x+12\)\(\Leftrightarrow x^2-4x-11=0\)
\(\Leftrightarrow x=2\pm\sqrt{15}\) (nhận)
Vậy pt đã cho có tập nghiệm \(S=\left\{2;-1;2\pm\sqrt{15}\right\}\)
a) \(\sqrt{2x-1}+\sqrt{x-1}=5\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\left(\sqrt{2x-1}+\sqrt{x-1}\right)^2=5^2\)
\(\Leftrightarrow2x-1+x-1+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)
\(\Leftrightarrow3x-2+2\sqrt{\left(2x-1\right)\left(x-1\right)}=25\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)\left(x-1\right)}=\dfrac{27-3x}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{27-3x}{2}\ge0\\\left(2x-1\right)\left(x-1\right)=\left(\dfrac{27-3x}{2}\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}27-3x\ge0\\2x^2-2x-x+1=\dfrac{729-162x+9x^2}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x\le27\\8x^2-12x+4=9x^2-162x+729\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\x^2-150x+725=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x-5=0\\x-145=0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le9\\\left[{}\begin{matrix}x=5\left(tm\right)\\x=145\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=5\)