Cho đường thẳng (d): y=(m+2)x+1
(d'): y=(m\(^2\)+2m).x-1
a) (d) và (d') có thể trùng nhau k? Vì sao?
b) Tìm m để (d)\(//\)(d')
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\Leftrightarrow\left\{{}\begin{matrix}m+2=-1\\-2m\ne5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\m\ne-\dfrac{5}{2}\end{matrix}\right.\Leftrightarrow m=-3\\ b,\text{PTHDGD: }2x+1=\left(m+2\right)x-2m\\ \text{Thay }x=-2\Leftrightarrow-2m-4-2m=-3\\ \Leftrightarrow-4m=1\Leftrightarrow m=-\dfrac{1}{4}\)
Sửa đề: x+2y=3
Tọa độ giao là:
x-y=1 và x+2y=3
=>x=5/3 và y=2/3
Thay x=5/3 và y=2/3 vào (d), ta được"
5/3(m+2)-m^2=2/3
=>5/3m+10/3-m^2-2/3=0
=>-m^2+5/3m+8/3=0
=>-3m^2+5m+8=0
=>-3m^2+8m-3m+8=0
=>(3m-8)(-m-1)=0
=>m=-1 hoặc m=8/3
Tọa độ giao điểm của (d') với (d'') là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}x-\dfrac{2}{3}=-x+1\\y=-x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x+x=\dfrac{2}{3}+1\\y=-x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=\dfrac{5}{3}\\y=-x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=\dfrac{5}{6}\\y=-\dfrac{5}{6}+1=\dfrac{1}{6}\end{matrix}\right.\)
Thay x=5/6 và y=1/6 vào (d), ta được:
\(\dfrac{5}{6}\left(m-1\right)-m=\dfrac{1}{6}\)
=>\(\dfrac{5}{6}m-\dfrac{5}{6}-m=\dfrac{1}{6}\)
=>\(-\dfrac{1}{6}m=1\)
=>m=-1:1/6=-6
Ta có: y=x-1
nên x-1=y
=>x-y=1
Tọa độ giao điểm của hai đường x-y=1 và x-2y=3 là:
\(\left\{{}\begin{matrix}x-y=1\\x-2y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
Thay x=-1 và y=-2 vào y=(m+2)x-m2, ta được:
\(-m^2+\left(-1\right)\cdot\left(m+2\right)=-2\)
\(\Leftrightarrow-m^2-m-2=-2\)
\(\Leftrightarrow m^2+m=0\)
=>m=0 hoặc m=-1
\(a,d//d_1\Leftrightarrow\left\{{}\begin{matrix}m+2=-2\\m\ne3\end{matrix}\right.\Leftrightarrow m=-4\\ b,d\perp d_2\Leftrightarrow\dfrac{1}{3}\left(m+2\right)=-1\Leftrightarrow m+2=-3\Leftrightarrow m=-5\\ c,d.qua.N\left(1;3\right)\Leftrightarrow x=1;y=3\Leftrightarrow3=m+2+m\\ \Leftrightarrow2m=1\Leftrightarrow m=\dfrac{1}{2}\)
a) không vì \(\left(d\right)\equiv\left(d'\right)\) \(\Leftrightarrow\left\{{}\begin{matrix}m+2=m^2+2m\\1=-1\end{matrix}\right.\) (vô lí)
b) để \(\left(d\right)\backslash\backslash\left(d'\right)\Leftrightarrow m^2+2m=m+2\)
\(\Leftrightarrow m^2+m-2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\) vậy \(m=1;m=-2\)
Mysterious Person giúp mk nha. Mk cảm ơn