K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC}  \Leftrightarrow \overrightarrow {BC}  = \overrightarrow b  - \overrightarrow a \)

Lại có: vecto \(\overrightarrow {BD} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BD} } \right| = \frac{1}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BD}  = \frac{1}{3}\overrightarrow {BC}  = \frac{1}{3}(\overrightarrow b  - \overrightarrow a )\)

Tương tự: vecto \(\overrightarrow {BE} ,\overrightarrow {BC} \) cùng hướng và \(\left| {\overrightarrow {BE} } \right| = \frac{2}{3}\left| {\overrightarrow {BC} } \right|\)

\( \Rightarrow \overrightarrow {BE}  = \frac{2}{3}\overrightarrow {BC}  = \frac{2}{3}(\overrightarrow b  - \overrightarrow a )\)

Ta có:

\(\overrightarrow {AB}  + \overrightarrow {BD}  = \overrightarrow {AD}  \Leftrightarrow \overrightarrow {AD}  = \overrightarrow a  + \frac{1}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{2}{3}\overrightarrow a  + \frac{1}{3}\overrightarrow b \)

\(\overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AE}  \Leftrightarrow \overrightarrow {AE}  = \overrightarrow a  + \frac{2}{3}(\overrightarrow b  - \overrightarrow a ) = \frac{1}{3}\overrightarrow a  + \frac{2}{3}\overrightarrow b \)

17 tháng 3 2018

\(\frac{1}{20}\cdot\frac{1}{30}\cdot\frac{1}{42}\cdot\frac{1}{56}\cdot\frac{1}{72}\cdot\frac{1}{90}\)

\(=\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)

\(=\frac{1}{4}-\frac{1}{10}\)

\(=\frac{6}{40}=\frac{3}{20}\)

NV
21 tháng 8 2020

\(\overrightarrow{BI}=\overrightarrow{BC}+\overrightarrow{CI}=\overrightarrow{BC}-\frac{1}{2}\overrightarrow{AB}\)

\(\overrightarrow{BG}=\frac{1}{3}\left(\overrightarrow{BI}+\overrightarrow{BC}\right)=\frac{1}{3}\left(\overrightarrow{BC}-\frac{1}{2}\overrightarrow{AB}+\overrightarrow{BC}\right)=\frac{2}{3}\overrightarrow{BC}-\frac{1}{6}\overrightarrow{AB}\)

\(\overrightarrow{AG}=\overrightarrow{AB}+\overrightarrow{BG}=\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}-\frac{1}{6}\overrightarrow{AB}=\frac{5}{6}\overrightarrow{AB}+\frac{2}{3}\overrightarrow{BC}=\frac{5}{6}\overrightarrow{a}+\frac{2}{3}\overrightarrow{b}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy: \(\overrightarrow {BC}  = \overrightarrow {BA}  + \overrightarrow {AC}  =  - \overrightarrow {AB}  + \overrightarrow {AC} \)

Ta có:

 +) \(\overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BD} \). Mà \(\overrightarrow {BD}  =  - \overrightarrow {DB}  =  - \frac{1}{3}\overrightarrow {BC} \)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {AB}  + \left( { - \frac{1}{3}} \right)( - \overrightarrow {AB}  + \overrightarrow {AC} ) = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} \)

+) \(\overrightarrow {DH}  = \overrightarrow {DA}  + \overrightarrow {AH}  =  - \overrightarrow {AD}  + \overrightarrow {AH} \).

Mà \(\overrightarrow {AD}  = \frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} ;\;\;\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} .\)

\( \Rightarrow \overrightarrow {DH}  =  - \left( {\frac{4}{3}\overrightarrow {AB}  - \frac{1}{3}\overrightarrow {AC} } \right) + \frac{2}{3}\overrightarrow {AB}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

+) \(\overrightarrow {HE}  = \overrightarrow {HA}  + \overrightarrow {AE}  =  - \overrightarrow {AH}  + \overrightarrow {AE} \)

Mà \(\overrightarrow {AH}  = \frac{2}{3}\overrightarrow {AB} ;\;\overrightarrow {AE}  = \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} .\)

b)

Theo câu a, ta có: \(\overrightarrow {DH}  = \overrightarrow {HE}  =  - \frac{2}{3}\overrightarrow {AB}  + \frac{1}{3}\overrightarrow {AC} \)

\( \Rightarrow \) Hai vecto \(\overrightarrow {DH} ,\overrightarrow {HE} \) cùng phương.

\( \Leftrightarrow \)D, E, H thẳng hàng