Tìm GTNN
M=lx-\(\frac{2}{3}\)l+1-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$M=x^2+8y^2-4xy+6x-16y+2019$
$=(x^2+4y^2-4xy)+4y^2+6x-16y+2019$
$=(x-2y)^2+6(x-2y)+4y^2-4y+2019$
$=[(x-2y)^2+6(x-2y)^2+9]+(4y^2-4y+1)+2009$
$=(x-2y+3)^2+(2y-1)^2+2009\geq 2009$
Vậy $M_{\min}=2009$. Giá trị này đạt tại $x-2y+3=0$ và $2y-1=0$ hay $(x,y)=(-2,\frac{1}{2})$
Tìm x
a)\(1-\left(2-\frac{3}{2}x\right)+\frac{1}{2}=\frac{3}{2}\)
b) \(lx-\frac{3}{2}l+1=\frac{5}{2}\)
\(\left|x-\frac{3}{2}\right|+1=\frac{5}{2}\)
\(\Rightarrow x-\frac{3}{2}=\frac{5}{2}-1\)
\(\Rightarrow x-\frac{3}{2}=\frac{3}{2}\)
\(\Rightarrow x=3\)
\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|\)
\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Rightarrow\left|x-\frac{1}{3}\right|=2\)
\(\Rightarrow x-\frac{1}{3}=2\text{ hoặc }x-\frac{1}{3}=-2\)
\(\Rightarrow x=\frac{7}{3}\text{ hoặc }x=-\frac{5}{3}\)
D = l x + 1/3 l + l x + 1/4 l + l x + 1/2l >= lx + 1/3l + l-x-1/2l = l x + 1/3 - x - 1/2l =l -1/6 l = 1/6
Min D = 1/6 khi và chỉ khi
x + 1/3 >= 0 x>= -1/3
x + 1/4 = 0 <=> x = -1/4
-x-1/2 >=0 x< = -1/2
Vậy MIn D = 1/6 khi x = -1/4
a) vì | x + \(\frac{5}{3}\)| \(\ge\)0 nên A = | x + \(\frac{5}{3}\)| + 112 \(\ge\)112
dấu " = " xảy ra khi | x + \(\frac{5}{3}\)| = 0 hay x = \(\frac{-5}{3}\)
\(\Rightarrow\)GTNN của A là 112 khi | x + \(\frac{5}{3}\) | = 0 hay x = \(\frac{-5}{3}\)
b) B = | x - 2,7 | + | x + 8,5 |
B = | 2,7 - x | + | x + 8,5 | \(\ge\)| 2,7 - x + x + 8,5 | = 11,2
\(\Rightarrow\)GTNN của B là 11,2 khi ( 2,7 - x ) . ( x + 8,5 ) \(\ge\)0 hay -8,5 \(\le\)x \(\le\)2,7
c) C = \(\left|x+\frac{1}{2}\right|+\left|x+\frac{1}{3}\right|+\left|2x+\frac{1}{4}\right|\)
C = \(\left|x+\frac{1}{2}\right|+\left|-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|\)\(\ge\)\(\left|x+\frac{1}{2}-\frac{1}{3}-x\right|+\left|2x+\frac{1}{4}\right|=\frac{1}{6}+\left|2x+\frac{1}{4}\right|\ge\frac{1}{6}\)
\(\Rightarrow\)GTNN của C là \(\frac{1}{6}\)khi \(\hept{\begin{cases}2x+\frac{1}{4}=0\Leftrightarrow x=\frac{-1}{8}\\\left(x+\frac{1}{2}\right).\left(-\frac{1}{3}-x\right)\ge0\Leftrightarrow\frac{-1}{2}\le x\le\frac{-1}{3}\end{cases}}\)
1) 2. I2x-3l = 1/2
|2x-3| =1/2:2
|2x-3| =1/4
=>2x-3 =1/4 hoặc 2x-3 =-1/4
2x =1/4+3 2x =-1/4+3
2x =13/4 2x =11/4
x =13/4:2 x =11/4:2
x =13/8 x =11/8
vậy x=13/8 hoặc 11/8
tich dung cho minh nhe
| x - 2/3 | \(_{\ge}\) 0 với mọi x
=> giá trị nhỏ nhất | x - 2/3 | là bằng 0 khi x = 2/3
vậy M nhỏ nhất là = 0 + 1 - 2/3 = 1/3