Cho tam giác ABC cân tại A. Kẻ đường cao AH. Gọi E, H lần lượt là trung điểm của AH và DC, D là điểm đối xứng của H qua F. Gọi P là giao điểm của đường thẳng EF và AB. Tìm điều kiện của tam giác ABC để tứ giác ADHP là hình thang cân.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AFCH có
E là trung điểm của AC
E là trung điểm của FH
Do đó: AFCH là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AFCH là hình chữ nhật
a: Xét tứ giác AFCH có
E là trung điểm của AC
E là trung điểm của HF
Do đó: AFCH là hình bình hành
mà \(\widehat{AHC}=90^0\)
nên AFCH là hình chữ nhật
d/ Xét t/g ABC cân tại A có AH là đường cao
=> AH đồng thời là đường trung tuyến
=> H là trung điểm BC
Gọi K là trung điểm AH
Có tứ giác ADHC là hình bình hành
=> AH cắt DC tại trung điểm mỗi đường.
=> AH cắt DC tại K
Hay K ∈ DCMà F là giao điểm DC và HE
=> CK cắt HE tại FXét t/g AHC có
E là trung điểm ACK là trung điểm AHCK cắt HE tại F
=> F là trọng tâm t/g AHC
=> 3EF = HE (1)Xét t/g ABC có
E là trung điểm AC (GT)H là trung điểm BC (cmt)=> HE là đườngtrung bình t/g ABC
=> HE = 1/2 AB
=> 2 HE = AB (2)Từ(1) và (2)=> AB = 6EF