Cho 4 điểm A1 ; A2 ; A3 ; A4 trong đó ko có điểm nào thẳng hàng. Số đường thẳng đi qua 2 trong 4 điểm trên là:
a. 6
b. 8
c. 10
d. 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Số cách lấy 3 điểm từ 10 điểm trên là .
Số cách lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 là:
Khi lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 thì sẽ không tạo thành tam giác.
Số tam giác tạo thành : tam giác.
Đáp án là C
Số cách lấy 3 điểm từ 10 điểm phân biệt là C 10 3 = 120
Số cách lấy 3 điểm bất kì trong 4 điểm A 1 , A 2 , A 3 , A 4 là C 4 3 = 4
Khi lấy 3 điểm bất kì trong 4 điểm A 1 , A 2 , A 3 , A 4 thì sẽ không tạo thành tam giác.
Như vậy, số tam giác tạo thành : 120- 4 = 116 tam giác.
Chọn A
Số tam giác được tạo thành từ 10 điểm là C 10 3 tam giác
Do 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng nên số tam giác mất đi là C 10 3
Vậy số tam giác thỏa mãn yêu cầu đề bài là C 10 3 - C 4 3 = 116 tam giác
Đáp án A.
Ta có 3TH.
+) TH1: 2 trong số 4 điểm A1, A2, A3, A4 tạo thành 1 cạnh, suy ra có C 4 2 . 6 = 36 tam giác.
+) TH2: 1 trong số 4 điểm A1, A2, A3, A4 là 1 đỉnh của tam giác, suy ra có 4 C 6 2 = 60 tam giác.
+) TH3: 0 có đỉnh nào trong 4 điểm A1, A2, A3, A4 là đỉnh của tam giác có C 6 3 = 20 tam giác. Suy ra có 36 + 60 + 20 = 116 tam giác có thể lập được.
Đáp án A
Lấy 3 đỉnh trong 10 điểm trên có C 10 3 = 120 cách
Lấy 3 đỉnh trong 4 điểm thẳng hàng có C 4 3 = 4 cách
Do đó, số tam giác cần tính là 120 − 4 = 116
Theo công thức : [n.(n-1)]:2
Số đường thẳng đi qua 2 trong 4 điêm trên là: [4.(4-1)]:2=6 đt
ĐS:6 đường thẳng
Số tam giác có các đỉnh là 3 trong 2n điểm A1;A2;…;A2n là:
Ta thấy ứng với hai đường chéo đi qua tâm O của đa giác A1A2…A2n cho tương ứng một hình chữ nhật có 4 đỉnh là 4 điểm trong 2n điểm A1;A2;…;A2n và ngược lại mỗi hình chữ nhật như vậy sẽ cho tương ứng hai đường chéo đi qua tâm O của đa giác.
Mà số đường chéo đi qua tâm của đa giác là n nên số hình chữ nhật có đỉnh là 4 trong 2n điểm bằng
Theo giả thiết:
⇒n=8.
Chọn C