K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

       \(4x^4+81\)

\(=\left(2x^2\right)^2+2.2x^2.9+9^2-36x^2\)

\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)

\(=\left(2x^2-6x+9\right)\left(2x^2+6x+9\right)\)

Vậy \(\orbr{\begin{cases}a=2,b=-6,c=9\\a=2,b=6,c=9\end{cases}}\)

Chúc bạn học tốt.

10 tháng 10 2018

cảm ơn

31 tháng 12 2016

Dùng sơ đồ hoocno mà giải đi bạn

1 tháng 1 2017

(Câu trả lời của alibaba nguyễn đúng mà hài!!!)

Sơ đồ Horner hoạt động như sau:

 10abc
313a+93a+b+279a+3b+c+27
316a+276a+b+10827a+6b+c+351
3...............
  • Kẻ bảng, trên dòng đầu tiên ghi các hệ số của đa thức đầu tiên, ở đây là \(1,0,a,b,c\).
  • Theo định lí Bezout thì đa thức sẽ có nghiệm bội 3 là số 3, do đó chừa một cột bên tay trái ghi nghiệm (là số 3).
  • Hạ hệ số (là 1) xuống, thực hiện quy tắc "nhân ngang cộng chéo" (nhân từ nghiệm qua rồi cộng chéo lên).
  • VD: 3 nhân 1 cộng 0 là 3, viết 3. 3 nhân 3 cộng a là a+9, viết a+9. 3 nhân (a+9) cộng b là 3a+b+27, viết 3a+b+27...
  • Để 3 là nghiệm của đa thức thì hệ số cuối cùng là 0, tức là \(9a+3b+c+27=0\).
  • Tự làm tiếp, ra thêm 2 cái phương trình nữa...
10 tháng 4 2022

tham khảo

Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :

P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .

Ta có :

P ( 0 ) chia hết cho 5

⇒ a . 02+ b . 0 + c chia hết cho 5

⇒ c chia hết cho 5

P ( 1 ) chia hết cho 5

⇒ a . 12 + b . 1 + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )

P ( - 1 ) chia hết cho 5

⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5

⇒ a + b + c chia hết cho 5

Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5

⇒ 2a chia hết cho 5

Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5

Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5

Vậy a , b , c chia hết cho 5 . ( đpcm )

10 tháng 4 2020

Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath

9 tháng 6 2017

9 tháng 2 2022

Không biết đề có vấn đề không nữa, tại vì không có cách nào để rút được c ra hết do f(n+1)-f(n) kiểu gì c cũng bị khử. Tuy nhiên nếu xét trường hợp với mọi c thì thay n=3 trở lên giải ngược lại không có nghiệm c nào thỏa mãn hết hehe nên là mình nghĩ đề sẽ kiểu "với n=1 hoặc n=2" . Theo mình nghĩ là vậy...

Giả sử n=1 ta có: 

\(f\left(1+1\right)-f\left(1\right)=1\Leftrightarrow f\left(2\right)-f\left(1\right)=1\Leftrightarrow4a+2b+c-a-b-c=1\Leftrightarrow3a+b=1\) (1)

Giả sử n=2 ta có: 

\(f\left(2+1\right)-f\left(2\right)=4\Leftrightarrow f\left(3\right)-f\left(2\right)=4\Leftrightarrow9a+3b+c-4a-2b-c=4\Leftrightarrow5a+b=4\) (2)

Từ (1) và (2) ta có: \(\left\{{}\begin{matrix}3a+b=1\\5a+b=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=\dfrac{3}{2}\\b=-\dfrac{7}{2}\end{matrix}\right.\) 

\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{7}{2}x+c\) (với c là hằng số bất kì)

 

15 tháng 4 2022

\(Q\left(0\right)=c⋮2014⋮1007\)

\(Q\left(1\right)=\left(a+b+c\right)⋮2014\Rightarrow\left(a+b\right)⋮2014\Rightarrow\left(2a+2b\right)⋮2014\)

\(Q\left(2\right)=\left(4a+2b+c\right)⋮2014\Rightarrow\left(4a+2b\right)⋮2014\)

\(\Rightarrow\left(4a+2b-2a-2b\right)⋮2014\)

\(\Rightarrow2a⋮2014\Rightarrow a⋮1007\Rightarrow b⋮1007\)

\(\Rightarrowđpcm\)