K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 5 2023

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{15}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{15}\)

\(=1-\dfrac{1}{15}=\dfrac{14}{15}\)

Mà \(\dfrac{14}{15}< 1\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{15}< 3\)

14 tháng 11 2018

1)A=987

5 tháng 12 2023

                          Bài 1: 

   (1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000

Đặt A = 1 - 2 + 3  - 4 +...- 96 + 97 - 98 + 99 

Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99

Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1

Số số hạng của dãy số trên là: (99 - 1): 1 +  = 99

                  Vì 99 : 2 = 49 dư 1

Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99

A = 1 - 2 + 3  - 4 + ... - 96 + 97 - 98 + 99

A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99

A =   - 1 + (-1) + (-1) +...+ (-1) + 99

A = -1.49 + 99

A = -49 + 99

A = 50 Thay A = 

Vậy 50.\(x\) = 2000

            \(x\) = 2000 : 50

             \(x\) = 40

       

 

 

           

 

      

5 tháng 12 2023

2, n và n + 1

Gọi ước chung lớn nhất của n và n + 1 là d

Ta có: n ⋮ d;  n + 1 ⋮ d 

⇒ n + 1  - n ⋮ d 

                1 ⋮ d

                d = 1

Vậy ƯCLN(n +1; n) = 1 Hay  n + 1; n là hai số nguyên tố cùng nhau (đpcm)

 

1 tháng 10 2018

Với a , b , c là số hữu tỉ t/m a = b + c ta luôn có \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)

Thật vậy : \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-2\left(\frac{1}{bc}-\frac{1}{ac}-\frac{1}{ab}\right)}\)

                                                       \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2-\frac{2.abc\left(a-b-c\right)}{a^2b^2c^2}}\)(quy đồng lên )

                                                         \(=\sqrt{\left(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right)^2}\left(\text{do a-b-c=0}\right)\)

                                                          \(=\left|\frac{1}{a}-\frac{1}{b}-\frac{1}{c}\right|\in Q\)

Áp dụng ta được \(A=\left|\frac{1}{3}-\frac{1}{2}-1\right|+\left|\frac{1}{4}-\frac{1}{3}-1\right|+...+\left|\frac{1}{2000}-\frac{1}{1999}-1\right|\)là số hữu tỉ

Vậy A là số hữu tỉ