K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

a) \(a+b=2\)

=>  \(b=2-a\)

\(A=a^2+\left(2-a\right)^2=2a^2-4a+4=\left(\sqrt{2}a-\sqrt{2}\right)^2+2\ge2\)

Vậy \(A_{min}=2\)

b)  \(x+2y=8\)

=> \(x=8-2y\)

\(B=y\left(8-2y\right)=8y-2y^2=8-\left(\sqrt{2}y-2\sqrt{2}\right)^2\le8\)

Vậy  \(B_{max}=8\)

DD
20 tháng 7 2021

a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab\)

\(\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{2^2}{2}=2\)

Dấu \(=\)khi \(a=b=1\).

b) \(\left(x-2y\right)^2\ge0\Leftrightarrow x^2+4y^2\ge4xy\Leftrightarrow x^2+4xy+4y^2\ge8xy\)

\(\Leftrightarrow xy\le\frac{\left(x+2y\right)^2}{8}=\frac{8^2}{8}=8\)

Dấu \(=\)khi \(\hept{\begin{cases}x=4\\y=2\end{cases}}\).