Tim GTLN,GTNN cua A\(=\dfrac{x+1}{x^2+x+1}\)
can gap juup vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-1\le sin\left(x+\dfrac{\pi}{3}\right)\le1\Rightarrow-2\le2sin\left(x+\dfrac{\pi}{3}\right)\le2\)
\(\Rightarrow1\le y\le5\)
\(y_{min}=1\) khi \(sin\left(x+\dfrac{\pi}{3}\right)=1\Rightarrow x=\dfrac{\pi}{6}+k2\pi\)
\(y_{max}=5\) khi \(sin\left(x+\dfrac{\pi}{3}\right)=-1\Rightarrow x=-\dfrac{5\pi}{6}+k2\pi\)
Lời giải:
Vì $\sin (x+\frac{\pi}{3})\in [-1;1]$
$\Rightarrow y=-2\sin (x+\frac{\pi}{3})+3\in [1;5]$
Vậy $y_{\min}=1$ và $y_{\max}=5$
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
a) Ta có: \(B=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(=\dfrac{4\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
\(=\dfrac{4}{\sqrt{x}+1}\)
b. Để A và B trái dấu \(\Leftrightarrow AB< 0\)
\(\Leftrightarrow\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\dfrac{4}{\sqrt{x}+1}\right)< 0\)
\(\Leftrightarrow\dfrac{4}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\)
\(\Rightarrow0< x< 1\)
Đặt \(y=\frac{x}{x^2+1}\Rightarrow y.\left(x^2+1\right)=x\Rightarrow yx^2+y-x=0\)
\(\Delta=1-4y^2\)
Để y xác định thì \(\Delta\ge0\Rightarrow1-4y^2\ge0\Leftrightarrow\frac{-1}{2}\le y\le\frac{1}{2}\)
Vậy GTNN của phân thức trên là -1/2 tại x=-1
GTLN của phên thức trên là 1/2 tại x=1