K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2019

Trả lời giúp chúng mik đi mai thầy kiểm tra

4 tháng 4 2019

1,\(\frac{xyz+x+z}{yz+1}=\frac{10}{7}\Rightarrow\frac{x\left(yz+1\right)+z}{yz+1}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{z}{yz+1}=\frac{10}{7}\Leftrightarrow x+\frac{1}{\frac{yz+1}{z}}=\frac{10}{7}\)

\(\Leftrightarrow x+\frac{1}{y+\frac{1}{z}}=1+\frac{3}{7}=1+\frac{1}{\frac{7}{3}}=1+\frac{1}{2+\frac{1}{3}}\)

Nên x=1,y=2,z=3 bài này thiếu điều kiện x,y,z nhé

2,bài 2 để mai anh xem nha

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

26 tháng 2 2022

\(x^3-xy+1=2y-x\)

\(\Leftrightarrow x^3+x+1=xy+2y\)

\(\Leftrightarrow x^3+x+1=y\left(x+2\right)\)

\(\Leftrightarrow y=\dfrac{x^3+x+1}{x+2}\)

-Vì \(x,y\) là các số nguyên nên:

\(\left(x^3+x+1\right)⋮\left(x+2\right)\)

\(\Rightarrow\left(x^3+2x^2-2x^2-4x+5x+10-9\right)⋮\left(x+2\right)\)

\(\Rightarrow\left[x^2\left(x+2\right)-2x\left(x+2\right)+5\left(x+2\right)-9\right]⋮\left(x+2\right)\)

\(\Rightarrow\left[\left(x+2\right)\left(x^2-2x+5\right)-9\right]⋮\left(x+2\right)\)

-Vì \(\left(x+2\right)\left(x^2-2x+5\right)⋮\left(x+2\right)\)

\(\Rightarrow9⋮\left(x+2\right)\)

\(\Rightarrow\left(x+2\right)\in\left\{1;3;9;-1;-3;-9\right\}\)

\(\Rightarrow x\in\left\{-1;1;7;-3;-5;-11\right\}\) (tmđk)

*Với \(x=-1\) thì \(y=\dfrac{\left(-1\right)^3+\left(-1\right)+1}{\left(-1\right)+2}=-1\) (tmđk)

*Với \(x=1\) thì \(y=\dfrac{1^3+1+1}{1+2}=1\)(tmđk)

*Với \(x=7\) thì \(y=\dfrac{7^3+7+1}{7+2}=39\)(tmđk)

*Với \(x=-3\) thì \(y=\dfrac{\left(-3\right)^3+\left(-3\right)+1}{\left(-3\right)+2}=29\)(tmđk)

*Với \(x=-5\) thì \(y=\dfrac{\left(-5\right)^3+\left(-5\right)+1}{\left(-5\right)+2}=43\)(tmđk)

*Với \(x=-11\) thì \(y=\dfrac{\left(-11\right)^3+\left(-11\right)+1}{\left(-11\right)+2}=149\)(tmđk)

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)