giải pt \(sin^3\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}sinx\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)sin x =4/3`
`=>` Ptr vô nghiệm vì `-1 <= sin x <= 1`
`b)sin 2x=-1/2`
`<=>[(2x=-\pi/6+k2\pi),(2x=[7\pi]/6+k2\pi):}`
`<=>[(x=-\pi/12+k\pi),(x=[7\pi]/12+k\pi):}` `(k in ZZ)`
`c)sin(x - \pi/7)=sin` `[2\pi]/7`
`<=>[(x-\pi/7=[2\pi]/7+k2\pi),(x-\pi/7=[5\pi]/7+k2\pi):}`
`<=>[(x=[3\pi]/7+k2\pi),(x=[6\pi]/7+k2\pi):}` `(k in ZZ)`
`d)2sin (x+pi/4)=-\sqrt{3}`
`<=>sin(x+\pi/4)=-\sqrt{3}/2`
`<=>[(x+\pi/4=-\pi/3+k2\pi),(x+\pi/4=[4\pi]/3+k2\pi):}`
`<=>[(x=-[7\pi]/12+k2\pi),(x=[13\pi]/12+k2\pi):}` `(k in ZZ)`
a: sin x=4/3
mà -1<=sinx<=1
nên \(x\in\varnothing\)
b: sin 2x=-1/2
=>2x=-pi/6+k2pi hoặc 2x=7/6pi+k2pi
=>x=-1/12pi+kpi và x=7/12pi+kpi
c: \(sin\left(x-\dfrac{pi}{7}\right)=sin\left(\dfrac{2}{7}pi\right)\)
=>x-pi/7=2/7pi+k2pi hoặc x-pi/7=6/7pi+k2pi
=>x=3/7pi+k2pi và x=pi+k2pi
d: 2*sin(x+pi/4)=-căn 3
=>\(sin\left(x+\dfrac{pi}{4}\right)=-\dfrac{\sqrt{3}}{2}\)
=>x+pi/4=-pi/3+k2pi hoặc x-pi/4=4/3pi+k2pi
=>x=-7/12pi+k2pi hoặc x=19/12pi+k2pi
a: sin x=-6/5=-1,2
mà -1<=sin x<=1
nên \(x\in\varnothing\)
b: sin3x=căn 3/2
=>3x=pi/3+k2pi hoặc 3x=2/3pi+k2pi
=>x=pi/9+k2pi/3 hoặc x=2/9pi+k2pi/3
c: \(sin\left(x+\dfrac{pi}{3}\right)=sin\left(\dfrac{3}{4}pi\right)\)
=>x+pi/3=3/4pi+k2pi hoặc x+pi/3=1/4pi+k2pi
=>x=5/12pi+k2pi hoặc x=-1/12pi+k2pi
d: =>sin(x+5/6pi)=5/4
mà sin(x+5/6pi) thuộc [-1;1]
nên \(x\in\varnothing\)
a.
\(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)=3sinx+cosx+2\)
\(\Leftrightarrow sin2x+cos2x=3sinx+cosx+2\)
\(\Leftrightarrow2sinx.cosx-3sinx+2cos^2x-cosx-3=0\)
\(\Leftrightarrow sinx\left(2cosx-3\right)+\left(cosx+1\right)\left(2cosx-3\right)=0\)
\(\Leftrightarrow\left(2cosx-3\right)\left(sinx+cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\dfrac{3}{2}\left(vn\right)\\sinx+cosx+1=0\end{matrix}\right.\)
\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=-\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow...\)
b.
ĐKXĐ: \(cosx\ne\dfrac{1}{2}\Rightarrow\left[{}\begin{matrix}x\ne\dfrac{\pi}{3}+k2\pi\\x\ne-\dfrac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\dfrac{\left(2-\sqrt{3}\right)cosx-2sin^2\left(\dfrac{x}{2}-\dfrac{\pi}{4}\right)}{2cosx-1}=1\)
\(\Rightarrow\left(2-\sqrt{3}\right)cosx+cos\left(x-\dfrac{\pi}{2}\right)=2cosx\)
\(\Leftrightarrow-\sqrt{3}cosx+sinx=0\)
\(\Leftrightarrow sin\left(x-\dfrac{\pi}{3}\right)=0\)
\(\Rightarrow x-\dfrac{\pi}{3}=k\pi\)
\(\Rightarrow x=\dfrac{\pi}{3}+k\pi\)
Kết hợp ĐKXĐ \(\Rightarrow x=\dfrac{4\pi}{3}+k2\pi\)
a, \(sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2cos^2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)=0\)
\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-2\cdot\left[1+cos2\cdot\left(\dfrac{\pi}{4}-\dfrac{x}{2}\right)\right]=0\)
\(\Leftrightarrow sin\dfrac{x}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x+1-1-cos\left(\dfrac{\pi}{2}-x\right)=0\)
\(\Leftrightarrow sin\dfrac{s}{2}\cdot sinx-cos\dfrac{x}{2}\cdot sin^2x-sinx=0\)
\(\Leftrightarrow sinx\cdot\left(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\text{ (1) }\\sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\text{ (2) }\end{matrix}\right.\)
(1) : \(sinx=0\Leftrightarrow x=k\pi\left(k\in Z\right)\)
(2) : \(sin\dfrac{x}{2}-sinx\cdot cos\dfrac{x}{2}-1=0\)
\(\Leftrightarrow sin\dfrac{x}{2}-cos\dfrac{x}{2}\cdot2sin\dfrac{x}{2}\cdot cos\dfrac{x}{2}-1=0\)
\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot cos^2\dfrac{x}{2}-1=0\)
\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}\cdot\left(1-sin^2\dfrac{x}{2}\right)-1=0\)
\(\Leftrightarrow sin\dfrac{x}{2}-2sin\dfrac{x}{2}+2sin^3\dfrac{x}{2}-1=0\)
\(\Leftrightarrow2sin^3\dfrac{x}{2}-sin\dfrac{x}{2}-1=0\)
\(\Leftrightarrow sin\dfrac{x}{2}=1\Leftrightarrow\dfrac{x}{2}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\pi+k4\pi\left(k\in Z\right)\)
b, \(tanx-3cotx=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)
\(\Leftrightarrow\dfrac{sinx}{cosx}-\dfrac{3cos}{sinx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)
\(\Leftrightarrow\dfrac{sin^2x-3cos^2x}{sinx-cosx}=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\)
\(\Leftrightarrow sin^2x-3cos^2x=4\cdot\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)
\(\Leftrightarrow\left(sinx-\sqrt{3}\cdot cosx\right)\cdot\left(sinx+\sqrt{3}\cdot cosx\right)=4\left(sinx+\sqrt{3}\cdot cosx\right)\cdot sinx\cdot cosx\)
\(\Leftrightarrow\left(sinx+\sqrt{3}\cdot cosx\right)\cdot\left[\left(sinx-\sqrt{3}\cdot cosx\right)-4sinx\cdot cosx\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}\cdot cosx=0\text{ (1) }\\sinx-\sqrt{3}\cdot cosx-4sinx\cdot cosx=0\text{ (2) }\end{matrix}\right.\)
(1) : \(sinx+\sqrt{3}\cdot cosx=0\)
\(\Leftrightarrow\dfrac{1}{2}sinx+\dfrac{\sqrt{3}}{2}cosx=0\)
\(\Leftrightarrow cos\dfrac{\pi}{3}\cdot sinx+sin\dfrac{\pi}{3}\cdot cosx=0\)
\(\Leftrightarrow sin\cdot\left(x+\dfrac{\pi}{3}\right)=0\)
\(\Leftrightarrow x+\dfrac{\pi}{3}=k\pi\Leftrightarrow x=\dfrac{-\pi}{3}+k\pi\left(k\in Z\right)\)
(2) : \(sinx-\sqrt{3}cosx-4sinx\cdot cosx=0\)
\(\Leftrightarrow sinx-\sqrt{3}cos=2sin2x\)
\(\Leftrightarrow\dfrac{1}{2}sinx-\dfrac{\sqrt{3}}{2}cos2=sin2x\)
\(\Leftrightarrow cos\dfrac{\pi}{3}-sinx-sin\dfrac{\pi}{3}\cdot cosx=sin2x\)
\(\Leftrightarrow sin\cdot\left(x-\dfrac{\pi}{3}\right)=sin2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{\pi}{3}=2x+k2\pi\\x-\dfrac{\pi}{3}=\pi-2x+k2\pi\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-\pi}{3}+k2\pi\\x=\dfrac{4\pi}{9}+\dfrac{k2\pi}{3}\left(k\in Z\right)\end{matrix}\right.\)
a: \(sinx=sin\left(\dfrac{\Omega}{4}\right)\)
=>\(\left[{}\begin{matrix}x=\dfrac{\Omega}{4}+k2\Omega\\x=\Omega-\dfrac{\Omega}{4}+k2\Omega=\dfrac{3}{4}\Omega+k2\Omega\end{matrix}\right.\)
b: cos2x=cosx
=>\(\left[{}\begin{matrix}2x=x+k2\Omega\\2x=-x+k2\Omega\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=k2\Omega\\3x=k2\Omega\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=k2\Omega\\x=\dfrac{k2\Omega}{3}\end{matrix}\right.\Leftrightarrow x=\dfrac{k2\Omega}{3}\)
c:
ĐKXĐ: \(x-\dfrac{\Omega}{3}< >\dfrac{\Omega}{2}+k\Omega\)
=>\(x< >\dfrac{5}{6}\Omega+k\Omega\)
\(tan\left(x-\dfrac{\Omega}{3}\right)=\sqrt{3}\)
=>\(x-\dfrac{\Omega}{3}=\dfrac{\Omega}{3}+k\Omega\)
=>\(x=\dfrac{2}{3}\Omega+k\Omega\)
d:
ĐKXĐ: \(2x+\dfrac{\Omega}{6}< >k\Omega\)
=>\(2x< >-\dfrac{\Omega}{6}+k\Omega\)
=>\(x< >-\dfrac{1}{12}\Omega+\dfrac{k\Omega}{2}\)
\(cot\left(2x+\dfrac{\Omega}{6}\right)=cot\left(\dfrac{\Omega}{4}\right)\)
=>\(2x+\dfrac{\Omega}{6}=\dfrac{\Omega}{4}+k\Omega\)
=>\(2x=\dfrac{1}{12}\Omega+k\Omega\)
=>\(x=\dfrac{1}{24}\Omega+\dfrac{k\Omega}{2}\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sinx+\frac{1}{2}cosx=1\)
\(\Leftrightarrow sin\left(x+\frac{\pi}{6}\right)=1\)
\(\Leftrightarrow x+\frac{\pi}{6}=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{3}+k2\pi\)
b.
\(\sqrt{2}sin\left(\frac{\pi}{4}-2x\right)+\sqrt{2}sin\left(\frac{\pi}{4}+x\right)=1\)
\(\Leftrightarrow cos2x-sin2x+sinx+cosx=1\)
\(\Leftrightarrow1-2sin^2x-2sinx.cosx+sinx+cosx=1\)
\(\Leftrightarrow-2sinx\left(sinx+cosx\right)+sinx+cosx=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(1-2sinx\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{4}\right)=0\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow x=...\)