Tìm p \(\in\rho\), biết p + 4 và p + 2 \(\in\rho\).
P là tập hợp các số nguyên tố nhé.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề là điền số thích hợp vào chỗ trống
p-1+3p=4p -1 =-1 +4p
->p-1 +3p = -1 +4 x p
Gọi d là ước chung cần tìm của 9x+4 và 2x-1
Do đó : 9x+4\(⋮\)d\(\Rightarrow\)2(9x+4)\(⋮\)d
Lại có: 2x-1\(⋮\)d\(\Rightarrow\)9(2x-1)\(⋮\)d
\(\Rightarrow\)9(2x-1)-2(9x+4)\(⋮\)d
\(\Rightarrow\)18x-9-18x+8\(⋮\)d
\(\Rightarrow\)17\(⋮\)d
Vậy d=17
Vậy UC(9x+4;2x-1)={17}
Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
Nếu p 3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k N*.
+) Nếu p = 3k p = 3 p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố.
+) Nếu p = 3k +1 thì p + 2 =3k+3-3
2. Giả sử b = 2
=> b + 2 = 2 + 2 = 4 ( không thoả mãn)
b = 3
=> b + 2 = 3 + 2 = 5, b + 4 = 3 + 4 = 7 ( thoả mãn)
=> b bằng 3 là một giá trị cần tìm
Xét b > 3 : Suy ra b có hai dạng 3k + 1 và 3k +2.
Với b có dạng 3k +1 => b + 2 = 3k +1 +2 = 3k + 3 chia hết cho 3 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Với b có dạng 3k + 2 => b + 4 = 3k +2 + 4 = 3k + 6 mà b là số nguyên tố lớn hơn 3 => không thoả mãn
Chứng tỏ mọi b lớn 3 đều không thoả mãn. Vậy b bằng 3 là giá trị cần tìm