K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Có SCP chia 8 dư 0;1;40;1;4.

Dễ dàng có: n=2kn=2k

(3k)2+427=t2⇔(t−3k)(t+3k)=6.71

9 tháng 1 2016

\(n+26=a^3\left(a\in N\cdot\right)\)
\(n-11=b^3\left(b\in N\cdot\right)\)
=>\(a^3-b^3=37\)
\(\left(a-b\right)\left(a^2+ab+b^2\right)=37\)
\(\Rightarrow\left(a-b\right)\&\left(a^2+ab+b^2\right)\) là ước của 37
Mà \(a^2-ab+b^2\ge a-b\ge0\)
\(\int^{a^2+ab+b^2=37}_{a-b=1}\Leftrightarrow\int^{a=b+1}_{\left(b+1\right)^2+b\left(b+1\right)+b^2=37}\Leftrightarrow\int^{a=b+1}_{3b^2+3b-36=0}\Leftrightarrow\int^{a=4}_{b=3}\)(vì a;b>0) thay hoặc a vào chỗ đặt rồi tự tìm nốt

1 tháng 2 2016

+)n=0 =>3n+18=30+18=1+18=19 là số nguyên tố( thỏa mãn)

+)n khác 0 =>3n​ chia hết cho 3,18 chia hết cho 3=>3n+18 chia hết cho 3

Ta có 3n+18>3

 Số 3n+18 là hợp số vì có 3 ước là 1,3 và chính nó ( loại)

 Vậy n=0 thì 3n+18 là số nguyên tố

Tick nhé

1 tháng 2 2016

Với \(n=0\Rightarrow3^0+18=19\in P\)

Với \(n\ge1\Rightarrow3^n\text{⋮}3\)

Mà \(18\text{⋮}3\)

\(\Rightarrow3^n+18\text{⋮}3\) (không là số n guyen tố)

Vậy n=0

6 tháng 2 2022

a) Ta có: \(A=\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là phân số thì \(n-1\ne0\Leftrightarrow n\ne1\)

Vậy \(n\ne1\) thì biểu thức \(A\) là phân số.

b) Ta có: \(\dfrac{4}{n-1}\left(n\in Z\right)\)

Để biểu thức \(A\) là số nguyên thì \(n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Rightarrow n\in\left\{2;0;3;-1;5;-3\right\}\)

Vậy \(n\in\left\{2;0;3;-1;5;-3\right\}\) thì biểu thức \(A\) là số nguyên.

a: Để A là phân số thì n-1<>0

hay n<>1

b: Để A là số nguyên thì \(n-1\inƯ\left(4\right)\)

\(\Leftrightarrow n-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{2;0;3;-1;5;-3\right\}\)

18 tháng 12 2017

Nếu p=2 thì p+10=12 là hợp số

       p=3 thì p+10=13 là 1 số nguyên tố

=>   p=3 thì p+14=17 cũng là 1 số nguyên tố (1)

Từ đó ,ta có:

p>3 thì  p=3k+1=>p+14=3k+15 là hợp số

             p=3k+2 => p+10=3k+12 cũng là hợp số  (2)

Từ (1) và (2) ,thì p=3

14 tháng 2 2016

a, Để A là phân số thì n + 1 khác 0

=> n khác -1

b, Để A là số nguyên thì 5 chia hết cho n + 1

=> n + 1 thuộc {1; -1; 5; -5}

=> n thuộc {0; -2; 4; -6}

Vậy...

14 tháng 2 2016

a, n khác 1

b,n{-6;-2;0;4}

9 tháng 2 2016

4^2= 16

5^2= 25

6^2= 36

7^2= 49

8^2= 64

9^2= 81 

nhe !

9 tháng 2 2016

Các số chính phương có hai chữ số

1;4;9;16;25;36;49;64;81

9 tháng 11 2014

Ta có: n = 2.3.5.7.11.13. ...

Dễ thấy n chia hết cho 2 và không chia hết cho 4.

-) Giả sử n+1 = a2, ta sẽ chứng minh điều này là không thể.

Vì n chẵn nên n+1 lẻ mà n+1= anên a lẻ, giả sử a=2k+1, khi đó:

n+1=(2k+1)2 <=>n+1=4k2+4k+1 <=>n=4k2+4 chia hết cho 4, điều này không thể vì n không chi hết cho 4.

Vậy n+1 không chính phương.

-) Dễ thấy n chia hết cho 3 nên n-1 chia cho 3 sẽ dư 2 tức n=3k+2, điều này vô lý vì số chính phương có dạng 3k hoặc 3k+1.

Vậy n-1 không chính phương

(Hình như bài này của lớp 8 nha)