chuyên mục Dãy tỉ số bằng nhau lớp 7
a) 3x = 2y và (x+y)3 - (x-y)3 = 126
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{0,3}=\dfrac{y}{0.2}=\dfrac{z}{0.1}=\dfrac{x-y}{0.3-0.2}=\dfrac{1}{0.1}=10\)
Do đó: x=3; y=2; z=1
3x=2y
=>\(\dfrac{x}{2}=\dfrac{y}{3}=k\)
=>x=2k; y=3k
\(\left(x+y\right)^3-\left(x-y\right)^3=126\)
=>\(\left(2k+3k\right)^3-\left(2k-3k\right)^3=126\)
=>\(\left(5k\right)^3-\left(-k\right)^3=126\)
=>\(126k^3=126\)
=>k3=1
=>k=1
=>\(x=2\cdot1=2;y=3\cdot1=3\)
a, \(\frac{x}{5}=\frac{y}{6};\frac{y}{8}=\frac{z}{7};x+y-7=60\)
\(\Rightarrow\frac{x}{5.8}=\frac{y}{6.8};\frac{y}{8.6}=\frac{z}{7.6};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48};\frac{y}{48}=\frac{z}{42};x+y=67\)
\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42};x+y=67\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{40}=\frac{y}{48}=\frac{x+y}{40+48}=\frac{67}{88}\)
Tính nốt nha
x/2=y/3;y/2=z/5 => x/2=2y/6;3y/6=z/5 => x/4=y/6=z/15
adtcdtsbn:
x/4=y/6=z/15=x+y+z/4+6+15=50/25=2
suy ra : x/4=2=>x=4.2=8
y/6=2=>y=2.6=12
z/15=2 => z=15.2=30
a, Ta có : \(x:y:z=5:3:4\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{5}=\frac{y}{3}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=-\frac{126}{7}=-18\)
\(x=-90;y=-54;z=-72\)
b, \(5x=2y;3y=5z\Rightarrow\frac{x}{2}=\frac{y}{5};\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=-\frac{970}{10}=-97\)
\(x=-194;y=-485;z=-291\)
\(\frac{x}{3}=\frac{y}{4}\)và \(2x+5y=10\)
\(\Rightarrow\frac{2x}{6}=\frac{5y}{20}\)và \(2x+5y=10\)
áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{2x}{6}=\frac{5y}{20}=\frac{2x+5y}{6+20}=\frac{5}{13}\)
\(\Rightarrow\orbr{\begin{cases}\frac{2x}{6}=\frac{5}{13}\\\frac{4y}{20}=\frac{5}{13}\end{cases}\Rightarrow\hept{\begin{cases}\frac{15}{13}\\\frac{25}{13}\end{cases}}}\)
\(KL\)
\(3x=2y=>\frac{x}{2}\)\(=\frac{y}{3}\)
Ta có:\(x=2k;y=3k\)
Thay x;y trông phép tính trên ta được
\(\left(2k+3k\right)^3\)\(-\left(x-y\right)^3\)\(=126\)
\(5k^3\)\(-\left(-1k\right)^3\)\(=126\)
\(5^3\)\(k^3\)\(+1k^3=126\)
\(125k^3\)\(+1k^3=126\)
\(k^3\)\(\left(125+1\right)\)\(=126\)
\(k^3\)\(126=126\)
\(k^3\)\(=126:126=1\)
\(=>k=1\)
\(x=2k=2.1=2\)
\(y=3k=3.1=3\)
\(=>x=2;y=3\)