K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2021

A = 2 + 22 + 23 + ...+ 230

A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 229 + 230 )

A = 2(1+2) + 23(1+2) + ....+ 229(1+2)

A = 2.3 + 23 . 3 + ...+ 229.3

A = 3(2+23 + ...+ 229\(⋮\) 3

Vậy  A chia hết cho 3 

22 tháng 7 2016

\(A=2+2^2+2^3+...+2^{20}\)

\(A=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{17}+2^{18}+2^{19}+2^{20}\right)\)

\(A=\left(2.1+2.2+2.2^2+2.2^3\right)+\left(2^5.1+2^5.2+2^5.2^2+2^5.2^3\right)+...\left(2^{17}.1+2^{17}.2+2^{17}.2^2+2^{17}.2^3\right)\)

\(A=2.\left(1+2+4+8\right)+2^5.\left(1+2+4+8\right)+...+2^{17}.\left(1+2+4+8\right)\)

\(A=2.15+2^5.15+...+2^{17}.15\)

\(A=15.\left(2+2^5+...+2^{17}\right)\)

Vì 15 chia hết cho 5 

=> A chia hết cho 5

22 tháng 7 2016

A=2.(1+2+4+8)+...2^17(1+2+4+8)

A=2.15+2^5.15+...+2^17.15

A=15.(2+2^5+...+2^17) chia het cho 5

Vay.............

16 tháng 11 2018

1:\(A=1+3+3^2+3^3+...+3^{11}\)

\(A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{10}+3^{11}\right)\)

\(A=4+3^2\cdot\left(1+3\right)+...+3^{10}\cdot\left(1+3\right)\)

\(A=4+3^2\cdot4+....+3^{10}\cdot4\)

\(A=4\cdot\left(1+3^2+...+3^{10}\right)\) chia hết cho 4

Vì ta có 4 chia hết cho 4 => A có chia hết cho 4

Vậy A chia hết cho 4

16 tháng 11 2018

2:

\(C=5+5^2+5^3+...+5^8\) chia hết cho 30

\(C=\left(5+5^2\right)+...+\left(5^7+5^8\right)\)

\(C=30+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)

\(C=30\cdot1+5^2\cdot30+...5^6\cdot30\)

\(C=30\cdot\left(5^2+...+5^6\right)\)

Vì ta có 30 chia hết cho 30 nên suy ra C có chia hết cho 30

Vậy C có chia hết cho 30

1 tháng 10 2023

a) \(C=5+5^2+5^3+...+5^8\)

\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)

\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)

\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)

Vậy C chia hết cho 30

b) \(D=2+2^2+2^3+...+2^{60}\)

\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)

\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)

Vậy D chia hết cho 3

\(D=2+2^2+2^3+...+2^{60}\)

\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)

\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)

\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)

Vậy D chia hết cho 7

\(D=2+2^2+2^3+...+2^{60}\)

\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)

\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)

\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)

Vậy D chia hết cho 15 

1 tháng 10 2023

a) C = 5 + 5² + 5³ + ... + 5⁸

= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)

= 30 + 5².30 + 5⁴.30 + 5⁶.30

= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30

Vậy C ⋮ 30

b) *) Chứng minh D ⋮ 3

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy D ⋮ 3   (1)

*) Chứng minh D ⋮ 7

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy D ⋮ 7   (2)

*) Chứng minh D ⋮ 15

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)

= 2.15 + 2⁵.15 + ... + 2⁵⁷.15

= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15

Vậy D ⋮ 15   (3)

Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15

8 tháng 12 2016

a)A chia hết cho 6 vì trong A có 2+2^2=2+4=6 chia hết cho 6

b)A chia hết cho 7 vì trong A có 2+2^2+2^3=2+4+8=14 chia hết cho7

c)A chia hết cho 30 vì trong A có 2+2^2+2^3+2^4=2+4+8+16=30

15 tháng 8 2020

***** HIỂN NHIÊN    \(A⋮2\)     (1)

a)    \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2003}+2^{2004}\right)\)

\(A=2\left(2+1\right)+2^3\left(1+2\right)+...+2^{2003}\left(1+2\right)\)

\(A=2.3+2^3.3+...+2^{2003}.3⋮3\)

=>    \(A⋮3\)      (2)

TỪ (1) VÀ (2) =>    \(A⋮6\)

VẬY TA CÓ ĐPCM.

b)     \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2002}+2^{2003}+2^{2004}\right)\)

=>   \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2002}\left(1+2+2^2\right)\)

=>    \(A=2.7+2^4.7+...+2^{2002}.7⋮7\)

VẬY TA CÓ ĐPCM.

c)     TA CÓ:      \(A⋮6\left(cmt\right)\)      (3)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{2001}+2^{2002}+2^{2003}+2^{2004}\right)\)

=>    \(A=2\left(1+2+2^2+2^3\right)+...+2^{2001}\left(1+2+2^2+2^3\right)\)

=>    \(A=2.15+....+2^{2001}.15⋮5\)

=>     \(A⋮5\)      (4)

TỪ (3) VÀ (4) =>     \(A⋮30\)

VẬY TA CÓ ĐPCM.

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

5 tháng 4 2017

1)

a)251-1

=(23)17-1\(⋮\)23-1=7

Vậy 251-1\(⋮\)7

b)270+370

=(22)35+(32)35\(⋮\)22+32=13

Vậy 270+370\(⋮\)13

c)1719+1917

=(BS18-1)19+(BS18+1)17

=BS18-1+BS18+1

=BS18\(⋮\)18

d)3663-1\(⋮\)35\(⋮\)7

Vậy 3663-1\(⋮\)7

3663-1

=3663+1-2

=BS37-2\(⋮̸\)37

Vậy 3663-1\(⋮̸\)37

e)24n-1

=(24)n-1\(⋮\)24-1=15

Vậy 24n-1\(⋮\)15

13 tháng 8 2019

BS là gì vậy bạn???

18 tháng 10 2021

a)A=2(1+2+2^2+...+2^19)

   =>A chia hết cho 2

b)A=(2+2^2)+(2^3+2^4)+...+(2^19+2^20)

   A=2(1+2)+2^3(1+2)+...+2^19(1+2)

   A=2.3+2^3.3+...+2^19.3

   A=3(2+2^3+...+2^19)

   =>A chia hết cho 3

c)A=(2+2^3)+(2^2+2^4)+...+(2^18+2^20)

   A=2(1+2^2)+2^2(1+2^2)+...+2^18(1+2^2)

   A=2.5+2^2.5+...+2^18.5

   A=5(2+2^2+...+2^18)

   =>A chia hết cho 5

28 tháng 9 2024

gythgygy