K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2020

dell bt lm

26 tháng 3 2017

\(\frac{10\frac{1}{3}\left(26\frac{1}{3}-\frac{176}{7}\right)-\frac{12}{11}\left(\frac{10}{3}-1,75\right)}{\frac{5}{\left(91-0,25\right).\frac{60}{11}-1}}\)

\(\Leftrightarrow\left(\frac{31}{3}.\frac{25}{21}-\frac{12}{11}.\frac{19}{12}\right):\left(5:495-1\right)\)

\(\Leftrightarrow\left(\frac{775}{63}-\frac{19}{11}\right):\left(-\frac{98}{99}\right)\)

\(\Leftrightarrow x=-\frac{3664}{343}\)

11 tháng 3 2018

mk ko viết lại đề đâu

A=\(\frac{\frac{31}{3}.\frac{25}{21}-\frac{12}{11}.\frac{19}{12}}{\frac{5}{90,75.\frac{60}{11}-1}}=\frac{\frac{775}{63}-\frac{19}{11}}{\frac{5}{495-1}}=\frac{7328}{693}:\frac{5}{494}=\frac{7328}{693}.\frac{494}{5}=\)

có máy tính thì tính được hết

23 tháng 7 2018

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

    \(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

     \(=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)

\(B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{92.95}\)

   \(=\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{92-92}{92.95}\)

   \(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}\)

     \(=\frac{1}{2}-\frac{1}{95}=\frac{93}{190}\)

\(C=\frac{5}{6}+\frac{5}{66}+\frac{5}{176}+\frac{5}{336}\)

    \(=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+\frac{5}{16.21}\)

    \(=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+\frac{21-16}{16.21}\) 

    \(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}\)

     \(=1-\frac{1}{21}=\frac{20}{21}\)

[ HỌC TỐT]

23 tháng 7 2018

\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=\frac{1}{2}-\frac{1}{100}\)

\(A=\frac{100}{200}-\frac{2}{200}\)

\(A=\frac{98}{200}=\frac{49}{100}\)