chung minh
A=2+22+23+.....+260 chia het cho 3 , 7 va 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(55-7.\left(x+3\right)=6\)
\(7.\left(x+3\right)=55-6\)
\(7.\left(x+3\right)=49\)
\(x+3=49:7\)
\(x+3=7\)
\(x=7-3\)
\(x=4\)
d) \(-14-x+\left(-15\right)=-10\)
\(-29-x=-10\)
\(x=-29+10\)
\(x=-19\)
-----------------------------
Số số hạng của A:
\(60-1+1=60\) (số)
Do \(60⋮6\) nên ta có thể nhóm các số hạng của A thành từng nhóm mà mỗi nhóm có 6 số hạng như sau:
\(A=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2.\left(1+2+2^2+2^3+2^4+2^5\right)+2^7.\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}.\left(1+2+2^2+2^3+2^4+2^5\right)\)
\(=2.63+2^7.63+...+2^{55}.63\)
\(=63.\left(2+2^7+...+2^{55}\right)\)
\(=21.3.\left(2+2^7+...+2^{55}\right)⋮21\)
Vậy \(A⋮21\)
55-7(x+3)=6
7(x+3)=55-6=49
(x+3)=49:7=7
x=7-3=4
(-14)-x + (-15)=-10
(-14)-x=-10-15=-25
x =-14-25=-39
A chia hết 31 chứ
a,A=(2+22)+(23+24)+...+(22009+22010)
A=(1+2)(2+23+...+22009)=3(2+...+22009)⋮3
A=(2+22+23)+...+(22008+22009+22010)
A=(1+2+22)(2+...+22008)=7(2+...+22008)⋮7
A = 8⁸ + 2²⁰
= (2³)⁸ + 2²⁰
= 2²⁴ + 2²⁰
= 2²⁰.(2⁴ + 1)
= 2²⁰.17 ⋮ 17
Vậy A ⋮ 17
Ta có:
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(H=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)
\(H=3\cdot\left(2+2^3+...+2^{59}\right)\)
Vậy H chia hết cho 3
_______
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(H=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)
\(H=7\cdot\left(2+2^4+...+2^{58}\right)\)
Vậy H chia hết cho 7
__________
\(H=2+2^2+2^3+...+2^{60}\)
\(H=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(H=2\cdot\left(1+2+4+8\right)+2^5\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)
\(H=15\cdot\left(2+2^5+...+2^{57}\right)\)
Vậy H chia hết cho 15
H=2+22+23+...+260�=2+22+23+...+260
Ta có:
H=2.(1+2)+23.(1+2)+...+259.(1+2)�=2.1+2+23.1+2+...+259.(1+2)
H=2.3+23.3+...+259.3�=2.3+23.3+...+259.3
H=3.(2+23+...+259)⋮3�=3.2+23+...+259 ⋮3
Ta có:
H=2.(1+2+22)+24.(1+2+22)+...+228.(1+2+22)�=2.1+2+22+24.1+2+22+...+228.1+2+22
H=2.7+24.7+...+258.7�=2.7+24.7+...+258.7Ta có:
H=2.(1+2+22+23)+25.(1+2+22+23)+...+257.(1+2+22+23)�=2.1+2+22+23+25.1+2+22+23+...+257.1+2+22+23
H=2.15+25.15+...+257.15�=2.15+25.15+...+257.15
H=15.(2+25+...+257)⋮15�=15.2+25+...+257 ⋮15Vậy H chia hết cho 3;7;153; 7; 15.
nhớ tik đúng nha!!!
Sơ đồ con đường |
Lời giải chi tiết |
Bước 1. Phân tích sao cho tổng đó thành tích các thừa số trong đó có một thừa số chia hết cho 7. Bước 2. Áp dụng tính chất chia hết của một tích. |
Ta có: A = 2 + 2 2 + 2 3 + … + 2 60 = 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + … + 2 58 + 2 59 + 2 60 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2. 1 + 2 + 2 2 + 2 4 . 1 + 2 + 2 2 + … + 2 58 . 1 + 2 + 2 2 = 2 + 2 4 + … + 2 58 .7 ⇒ A ⋮ 7 |
A=( 2+2^2) + (2^3+2^4) +......+ (2^59 + 2^60)
A=2.(1+2) + 2^3. (1+2) +.....+ 2^59.(1+2)
A=2.3+2^3.3+......+ 2^59.3
A= 3. (2+2^3+....+2^59)
vì 3 chia hết cho 3 suy ra A chia hết cho 3Nguyễn Thị kim Oanh
tick nha
đừng dại dột bấm vào Đúng 0 này của nó sẽ hối hận cả đời