a.(x-1)x+2 = (x-1)x+4
giúp với nha
ai đang online thì giúp em với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+2x^3-4x=4\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
\(\Rightarrow x^4+2x^3-4x-4=0\\ \Rightarrow x^4-2x^2+2x^3-4x+2x^2-4=0\\ \Rightarrow\left(x^2-2\right)\left(x^2+2x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=2\\\left(x+1\right)^2+1=0\left(vô.lí\right)\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Bài 2:
a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0
hay x>-2
b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0
hay x<-2/3
\(\left(x-1\right)^2=\left(x-1\right)^4\)
\(\Rightarrow\left(x-1\right)^4-\left(x-1\right)^2=0\)
\(\Rightarrow\left(x-1\right)^2\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-1\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x-1=1\\x-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
a = |2x-1/3|-7/4
Do |2x-1/3| \(\ge\) 0
|2x-1/3|-7/4 \(\ge\) 7/4
Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6
b 1/3|x-2|+2|3-1/2 y|+4
Do |x-2| \(\ge\) 0
|3-1/2y| \(\ge\) 0
=> 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4
Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)
b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=6
\(A=\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=\dfrac{3x\left(x+1\right)}{2\left(x+1\right)\left(x-3\right)}=\dfrac{3x}{2\left(x-3\right)}\)
Thay x=1 vào A ta được\(A=\dfrac{3x}{2\left(x-3\right)}=\dfrac{3.1}{2\left(1-3\right)}=\dfrac{3}{2.\left(-2\right)}=\dfrac{-3}{4}\)
Thay x=4 vào A ta được\(A=\dfrac{3x}{2\left(x-3\right)}=\dfrac{3.4}{2\left(4-3\right)}=\dfrac{12}{2.1}=\dfrac{12}{2}=6\)
\(A=\dfrac{3x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}=\dfrac{3x}{2\left(x-3\right)}\\ x=1\Leftrightarrow A=\dfrac{3}{2\left(-2\right)}=-\dfrac{3}{4}\\ x=4\Leftrightarrow A=\dfrac{12}{2}=6\)
a) /x/ =3+5
/x/=8
x= 8 hoặc x=-8
b) \(\Rightarrow\)/x-1/+6=-15
/x-1/=-21
\(\Leftrightarrow\)x-1=-21 hoặc 1-x=-21
x=-20 hoặc x=22
Vậy x= -20 ; x=22
c)\(\Rightarrow\)3./x-2/= -18
/x-2/= -6
x-2=-6 hoặc 2-x=-6
x=-4 hoặc x=8
Vậy x= -4 , x=8
a) \(\Leftrightarrow\left|x\right|=3+5\)
\(\Leftrightarrow\left|x\right|=8\)
\(\Leftrightarrow x=\hept{\begin{cases}8\\-8\end{cases}}\)
\(\dfrac{x-7}{y-6}=\dfrac{7}{6}\\ \Leftrightarrow6x-42=7y-42\\ \Leftrightarrow6x=7y\\ \Leftrightarrow\dfrac{x}{7}=\dfrac{y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{7}=\dfrac{y}{6}=\dfrac{x-y}{7-6}=\dfrac{-4}{1}=-4\\ \dfrac{x}{7}=-4\Leftrightarrow x=-28\\ \dfrac{y}{6}=-4\Leftrightarrow y=-24\)
ta có
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}=0\)
\(\left(x-1\right)^{x+2}[\left(x-1\right)^2-1]=0\)
+, \(\left(x-1\right)^{x+2}=0\Rightarrow x-1=0\Rightarrow x=1\)
+, \(\left(x-1\right)^2-1=0\Rightarrow\left(x-1\right)^2=1\Rightarrow\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy...