Cho tam giác ABC cân tại A
M là trung điểm AC
Tính tan MBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMN có AM=AN
nên ΔAMN cân tại A
b: Xét ΔABC có AM/AB=AN/AC
nên MN//BC
c: Xét ΔMBC và ΔNCB có
MB=NC
\(\widehat{MBC}=\widehat{NCB}\)
BC chung
Do đó: ΔMBC=ΔNCB
câu a: xét \(\Delta AMB\) và \(\Delta AMC\)có :
AB=AC(gt)
MB=MC(tam giác MBC cân)
AM là cạnh chung
\(\Rightarrow\Delta AMB=\Delta AMC\)(C.C.C)
\(\Rightarrow\)\(\widehat{BAM}=\widehat{CAM}\)
Vậy AM là tia phân giác\(\widehat{BAC}\)
B)
góc ABM= góc ACM= \(\frac{180º-20º}{2}-60º=20º\)
Vậy \(\widehat{ABM}=\widehat{ACM}=\widehat{BAC}\)