Chứng minh đẳng thức :
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\left(\dfrac{\sqrt{10}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}-\dfrac{\sqrt{6^2}}{\sqrt{6}}\right)\sqrt{4+\sqrt{15}}\)
\(=\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4+\sqrt{15}}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{5+2\sqrt{3}\sqrt{5}+3}\)
\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)
\(VT\Leftrightarrow\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4+\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2=VP\left(dpcm\right)\)
\(\sqrt{4x+8}+3\sqrt{x+2}=3+\dfrac{4}{5}\sqrt{25x+50}\left(x\ge-2\right)\)
\(\Rightarrow2\sqrt{x+2}+3\sqrt{x+2}-4\sqrt{x+2}=3\Rightarrow\sqrt{x+2}=3\Rightarrow x=7\)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\dfrac{4+2\sqrt{3}}{2}}+\sqrt{\dfrac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}+\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)
a: Ta có: \(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}-2\sqrt{6}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\left(\dfrac{\sqrt{6}}{2}-\dfrac{4\sqrt{6}}{2}\right)\cdot\dfrac{1}{\sqrt{6}}\)
\(=\dfrac{-3}{2}\)
`e)(3/2sqrt6+2sqrt{2/3}-4sqrt{3/2})(3/2sqrt6+2sqrt{2/3}+4sqrt{3/2})`
`=(3/2sqrt6+2sqrt{2/3})^2-(4\sqrt{3/2})^2`
`=((3sqrt6)/2+(2sqrt2)/3)^2-16*3/2`
`=((9sqrt6)/6+(4sqrt6)/6)^2-24`
`=((13sqrt6)/6)^2-24`
`=13^2/6-24`
`=25/6`
giả sử 2 vế bằng nhau, nhân tích chéo, rồi được 2 vế = nhau là kết luận thỏa mãn
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}=\frac{1}{1+\sqrt{2}}=\frac{\sqrt{2}-1}{2-1}=\sqrt{2}-1=vp\)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+2+2+\sqrt{6}+\sqrt{8}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}}{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(\sqrt{2}+1\right)}=\frac{1}{\sqrt{2}+1}=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\sqrt{2}-1\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Đặt VT = A = √2+√3+√2−√3
=> \(A\sqrt{2}\) = \(\sqrt{2}\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)\)
= \(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\) = \(\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}\)
= \(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\) = \(\sqrt{3}+1+\sqrt{3}-1=2\sqrt{3}\)
VP = B => \(B\sqrt{2}=\sqrt{2}.\sqrt{6}=2\sqrt{3}\)
=> \(A\sqrt{2}=B\sqrt{2}\Rightarrow A=B\)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{6}\)
<=> \(\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2\)= \(6\)
* Xét vế trái ta có :
\(\left(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}\right)^2\)
= \(\left(\sqrt{2+\sqrt{3}}\right)^2+2\left(\sqrt{2+\sqrt{3}}\right)\left(\sqrt{2-\sqrt{3}}\right)+\left(\sqrt{2-\sqrt{3}}\right)^2\)
= \(2+\sqrt{3}+2\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)+2-\sqrt{3}\)
=