Xác định a,b để
\(x^4+x^2+1\)\(⋮\)\(x^2+ax+b\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm mẫu 1 phần thôi men còn lại tự làm
giải
a)
Để \(A\left(x\right)⋮B\left(x\right)\)\(\Leftrightarrow\hept{\begin{cases}b-3a+16a=0\\24-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+13.2=0\\a=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=-26\\a=2\end{cases}}\)
=x^4+4x^2+4-4x^2
=(x^2+2)^2-4x^2
=(x^2+2-2x)(x^2+2+2x)
Để x^4+4 chia hết cho x^2+ax+b thì
(x^2-2x+2)(x^2+2x+2) chia hết cho x^2+ax+b
Ta có: \(x^4+x^2+1=x^4+x^3+x^2-\left(x^3-1\right)=x^2\left(x^2+x+1\right)-\left(x-1\right)\left(x^2+x+1\right)=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Do \(x^4+x^2+1⋮x^2+ax+b\) nên \(\orbr{\begin{cases}x^2+ax+b=x^2+x+1\\x^2+ax+b=x^2-x+1\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=-1\\b=1\end{cases}}\)
Vậy ...