C/m rằng : a(b-c)(a+b-c)2 + c(a-b)(a+b-c)2 =b(a-c)(a+c-b)2
giúp mk với ahuhu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Từ $a+b> c\Rightarrow a+b-c>0$ (cái này hiển nhiên)
Từ $|a-b|< c\Leftrightarrow |a-b|^2< c^2$
$\Leftrightarrow (a-b)^2< c^2$
$\Leftrightarrow (a-b-c)(a-b+c)<0$
Với $c>0$ thì $a-b-c< a-b+c$ nên để tích âm thì $a-b-c<0< a-b+c$
Hay $a-b-c<0$ và $a-b+c>0$
1, a +b +c = 0 => a + b = -c ; a +c = -b ; b+c = -a
thay vào M ta có
M = a . -c . -b = abc (1)
Thay tương tự vào N , P ta cũng đc N =abc (2)
P =abc( 3)
Từ 1 2 và 3 => ĐPCM
2,
a + b +c = 2P
=> b + c = 2P -a
=> ( b + c)^2 = ( 2P -a)^2
=> b^2 + 2bc+ c^2 = 4p^2 - 4pa + a^2
=> 2bc+ b^2 + c^2 -a^ 2 = 4p^2 - 4pa
=> 2bc + b^2 + c^2 -a ^ 2 = 4p(p-a)=> ĐPCM
Xét hiệu: 2(a2+b2+c2-ab-bc-ac)= (a2-2ab+b2)+(b2-2bc+c2)+(c2-2ca+a2)
=(a-b)2+(b-c)2+(c-a)2>=0
=> đccm
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{8}\)
\(=>\frac{a}{2}=\frac{b}{5}=\frac{2c}{16}\)
ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAY, TA CÓ:
\(\frac{a}{2}=\frac{b}{5}=\frac{c}{8}=\frac{2c}{16}=\frac{a-b+2c}{2-5+16}=\frac{6}{13}\)
\(\frac{a}{2}=\frac{6}{13}=>a=\frac{12}{13}\)
\(\frac{b}{5}=\frac{6}{13}=>b=\frac{30}{13}\)
\(\frac{c}{8}=\frac{6}{13}=>c=\frac{48}{13}\)
Vậy a=...
b=...
c=...
Bài 6 . Áp dụng BĐT Cauchy , ta có :
a2 + b2 ≥ 2ab ( a > 0 ; b > 0)
⇔ ( a + b)2 ≥ 4ab
⇔ \(\dfrac{\left(a+b\right)^2}{4}\)≥ ab
⇔ \(\dfrac{a+b}{4}\) ≥ \(\dfrac{ab}{a+b}\) ( 1 )
CMTT , ta cũng được : \(\dfrac{b+c}{4}\) ≥ \(\dfrac{bc}{b+c}\) ( 2) ; \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ac}{a+c}\)( 3)
Cộng từng vế của ( 1 ; 2 ; 3 ) , Ta có :
\(\dfrac{a+b}{4}\) + \(\dfrac{b+c}{4}\) + \(\dfrac{a+c}{4}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
⇔ \(\dfrac{a+b+c}{2}\) ≥ \(\dfrac{ab}{a+b}\) + \(\dfrac{bc}{b+c}\) + \(\dfrac{ac}{a+c}\)
Bài 4.
Áp dụng BĐT Cauchy cho các số dương a , b, c , ta có :
\(1+\dfrac{a}{b}\) ≥ \(2\sqrt{\dfrac{a}{b}}\) ( a > 0 ; b > 0) ( 1)
\(1+\dfrac{b}{c}\) ≥ \(2\sqrt{\dfrac{b}{c}}\) ( b > 0 ; c > 0) ( 2)
\(1+\dfrac{c}{a}\) ≥ \(2\sqrt{\dfrac{c}{a}}\) ( a > 0 ; c > 0) ( 3)
Nhân từng vế của ( 1 ; 2 ; 3) , ta được :
\(\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\) ≥ \(8\sqrt{\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{a}}=8\)