Tìm A, biết : A= \(\frac{1}{2}+\frac{1}{6}+.....+\frac{1}{56}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)
=> \(A=\frac{9}{10}\)
b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)
=> \(A=1+\frac{7}{n-5}\)
Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)
=> n=(-2; 4, 6, 8)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9
=1-1/2+1/2-1/3+1/3-1/4+...+1/8-1/9
=1-1/9
=8/9
A) \(x = {7 \over 10}- {8 \over10} \)
\(x = {-1 \over 10}\)
B)\({2 \over3}x = 2{5 \over 6}-{3 \over4}\)
\({2 \over3}x = {25 \over 12}\)
\(x = {25 \over 12}/{2 \over3} \)
\(x = {25\over 8}\)
2/ Tính tổng:
\( = {8 \over 9}\)
\(a)\frac{62}{7}\cdot x=\frac{29}{9}\div\frac{3}{56}\)
\(\Rightarrow\frac{62}{7}\cdot x=\frac{29}{9}\cdot\frac{56}{3}\)
\(\Rightarrow\frac{62}{7}\cdot x=\frac{1624}{27}\)
\(\Rightarrow x=\frac{1624}{27}\div\frac{62}{7}\)
\(\Rightarrow x=\frac{1624}{27}\cdot\frac{7}{62}\)
\(\Rightarrow x=\frac{11368}{1674}=\frac{5684}{837}\)
Rút gọn thử đi
\(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
\(A=\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{6}\right)+\left(\frac{1}{6}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)\)
\(A=1-\frac{1}{9}=\frac{8}{9}\)
A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)
=1\(-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
=1-\(\frac{1}{9}=\frac{8}{9}\)
Vậy A=\(\frac{8}{9}\)
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\right)\)
\(A=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)
\(A=\frac{9}{10}-\frac{9}{10}=0\)
\(A=\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-\frac{1}{56}-...-\frac{1}{6}-\frac{1}{2}\)
\(\Leftrightarrow A=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(\Leftrightarrow A=\frac{9}{10}-\frac{9}{10}\)
\(\Leftrightarrow A=0\)
a=1/1.2+1/2.3+1/3.4+...............+1/7.8 ta thấy hiệu cuẩ mẫu bằng tử suy ra
a=1-1/2+1/2-1/3+...................+1/6-1/7+1/7-1/8
sau khi giảm ước đi ta còn 1-1/8=7/8
kết quả là 7/8